medigraphic.com
ENGLISH

El Residente

ISSN 2007-2783 (Impreso)
Órgano Oficial del Instituto Científico Pfizer
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2016, Número 2

Siguiente >>

Residente 2016; 11 (2)


El ácido fólico como citoprotector después de una revisión

Navarro-Pérez SF, Mayorquín-Galván EE, Petarra-Del Río S, Casas-Castañeda M, Romero-Robles GBM, Torres-Bugarín O, Lozano-de la Rosa C, Zavala-Cerna MG
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 30
Paginas: 51-59
Archivo PDF: 265.84 Kb.


PALABRAS CLAVE

Ácido fólico, deficiencias nutricionales, embarazo, estrés oxidativo, genotoxicidad.

RESUMEN

El ácido fólico, cuya forma farmacéutica es el ácido pteroilglutámico, es la forma monoglutámica completamente oxidada de la vitamina B9, es un compuesto sintético con estructura similar a la del folato, pero con mayor biodisponibilidad, se encuentra en suplementos vitamínicos y alimentos fortificados; no tiene actividad biológica a menos que sea convertido en folatos. El metabolismo del ácido fólico es complejo y está relacionado con diversas vías metabólicas, todas ellas confieren protección a la célula y permiten su supervivencia. El propósito de esta revisión es proporcionar información sobre lo que se conoce respecto al metabolismo del ácido fólico y cómo es que las deficiencias en este nutriente pueden desencadenar la presencia de estrés oxidativo e inestabilidad genética, lo que puede relacionarse con distintas patologías. Asimismo, se hizo una revisión sobre situaciones específicas en las que el ácido fólico se administra como suplemento y los beneficios de su administración.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Mahmood L. The metabolic processes of folic acid and Vitamin B12 deficiency. J Health Res Rev. 2014; 1: 5-9.

  2. Coppedè F. The genetics of folate metabolism and maternal risk of birth of a child with Down syndrome and associated congenital heart defects. Front Genet. 2015; 6: 223.

  3. Brito A, Hertrampf E, Olivares M, Gaitán D, Sánchez H, Allen LH et al. Folate, vitamin B12 and human health. Rev Med Chil. 2012; 140 (11): 1464-1475.

  4. Pita-Rodríguez G, Pineda D, Martín I, Monterrey-Gutiérrez P, Serrano-Sintes G, Macías-Matos C. Ingesta de macronutrientes y vitaminas en embarazadas durante un año. Rev Cubana Salud Pública. 2003; 29: 220-227.

  5. Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington, D.C.: National Academy Press; 1998. pp. 196-305.

  6. Suárez de Ronderos M. Ácido fólico: nutriente redescubierto. Acta Médica Costarricense. 2003; 45 (1): 5-9.

  7. Fenech M. Folate (vitamin B9) and vitamin B12 and their function in the maintenance of nuclear and mitochondrial genome integrity. Mutat Res. 2012; 733 (1-2): 21-33.

  8. Kandi V, Vadakedath S. Effect of DNA methylation in various diseases and the probable protective role of nutrition: a mini-review. Cureus. 2015; 7 (8): e309.

  9. de Paz R, Hernandez-Navarro F. Management, prevention and control of megaloblastic anemia, secondary to folic acid deficiency. Nutr Hosp. 2006; 21 (1): 113-119.

  10. Lumley J, Watson L, Watson M, Bower C. Periconceptional supplementation with folate and/or multivitamins for preventing neural tube defects. Cochrane Database Syst Rev. 2001; (3): CD001056.

  11. Barua S, Kuizon S, Junaid MA. Folic acid supplementation in pregnancy and implications in health and disease. J Biomed Sci. 2014; 21: 77.

  12. Li Z, Ye R, Zhang L, Li H, Liu J, Ren A. Folic acid supplementation during early pregnancy and the risk of gestational hypertension and preeclampsia. Hypertension. 2013; 61 (4): 873-879.

  13. Kim MW, Ahn KH, Ryu KJ, Hong SC, Lee JS, Nava-Ocampo AA et al. Preventive effects of folic acid supplementation on adverse maternal and fetal outcomes. PLoS One. 2014; 9 (5): e97273.

  14. Barco-Tavares B, Neves-Finochio Sabino AM, Lima JC, Tozzo-Garcia C. Knowledge of folic acid supplementation during pregnancy. Invest Educ Enferm. 2015; 33 (3): 456-464.

  15. Navarrete-Muñoz EM, Valera-Gran D, García de la Hera M, Gimenez-Monzo D, Morales E, Julvez J et al. Use of high doses of folic acid supplements in pregnant women in Spain: an INMA cohort study. BMJ Open. 2015; 5 (11): e009202.

  16. deRosset L, Mullenix A, Flores A, Mattia-Dewey D, Mai CT. Promotora de salud: promoting folic acid use among Hispanic women. J Womens Health (Larchmt). 2014; 23 (6): 525-531.

  17. Funk RS, van Haandel L, Leeder JS, Becker ML. Folate depletion and increased glutamation in juvenile idiopathic arthritis patients treated with methotrexate. Arthritis Rheumatol. 2014; 66 (12): 3476-3485.

  18. Ortiz Z, Shea B, Suarez-Almazor M, Moher D, Wells G, Tugwell P. Folic acid and folinic acid for reducing side effects in patients receiving methotrexate for rheumatoid arthritis. Cochrane Database Syst Rev. 2000; (2): CD000951.

  19. van den Bemt BJ, den Broeder AA, Van der Burgt M, Fransen J, van Ede AE, van den Hoogen FH. (Bi)Weekly folic acid supplementation might be inferior to a daily folic acid dosing schedule in the prevention of methotrexate-related toxicity in patients with rheumatoid arthritis. Clin Exp Rheumatol. 2015; 33 (5): 767-768.

  20. Sánchez-Valle V, Méndez-Sánchez N. Estrés oxidativo, antioxidantes y enfermedad. Rev Invest Med Sur Mex. 2013; 20 (3): 161-168.

  21. Perozo-Romero J, Guerra-Velásquez M, Reyna-Villasmil E, Mejia-Montilla J, Reyna-Villasmil N, Torres-Cepeda D et al. Homocisteína sérica en neonatos de preeclámpticas y de embarazadas normotensas. Prog Obstet Ginecol. 2011; 54 (8): 408-412.

  22. Sánchez-Cuevas M, Jiménez-Reséndiz S, Morgado-Vázquez J. La homocisteína: un aminoácido neurotóxico. REB. 2009; 28 (1): 3-8.

  23. Brenner G, Stevens C. Pharmacology. 4th ed. Philadelphia, USA: Lippincott Williams & Wilkins; 2013.

  24. Petras M, Tatarkova Z, Kovalska M, Mokra D, Dobrota D, Lehotsky J et al. Hyperhomocysteinemia as a risk factor for the neuronal system disorders. J Physiol Pharmacol. 2014; 65 (1): 15-23.

  25. Zou CG, Banerjee R. Homocysteine and redox signaling. Antioxid Redox Signal. 2005; 7 (5-6): 547-559.

  26. Faraci FM, Lentz SR. Hyperhomocysteinemia, oxidative stress, and cerebral vascular dysfunction. Stroke. 2004; 35 (2): 345-347.

  27. Fenech M. Micronutrients and genomic stability: a new paradigm for recommended dietary allowances (RDAs). Food Chem Toxicol. 2002; 40 (8): 1113-1117.

  28. Kimura M, Umegaki K, Higuchi M, Thomas P, Fenech M. Methylenetetrahydrofolate reductase C677T polymorphism, folic acid and riboflavin are important determinants of genome stability in cultured human lymphocytes. J Nutr. 2004; 134 (1): 48-56.

  29. Wang Y, Xu S, Cao Y, Xie Z, Lai C, Ji X et al. Folate deficiency exacerbates apoptosis by inducing hypomethylation and resultant overexpression of DR4 together with altering DNMTs in Alzheimer’s disease. Int J Clin Exp Med. 2014; 7 (8): 1945-1957.

  30. Duthie SJ, Narayanan S, Brand GM, Pirie L, Grant G. Impact of folate deficiency on DNA stability. J Nutr. 2002; 132 (8 Suppl): 2444S-2449S.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Residente. 2016;11

ARTíCULOS SIMILARES

CARGANDO ...