medigraphic.com
ENGLISH

Salud Pública de México

Instituto Nacional de Salud Pública
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2017, Número 4

<< Anterior Siguiente >>

salud publica mex 2017; 59 (4)


Tamiz bioquímico y metabolómico en el estudio de los trastornos del desarrollo intelectual en México

Ibarra-González I, Rodríguez-Valentín R, Lazcano-Ponce E, Vela-Amieva M
Texto completo Cómo citar este artículo Artículos similares

Idioma: Ingles.
Referencias bibliográficas: 25
Paginas: 423-428
Archivo PDF: 226.12 Kb.


PALABRAS CLAVE

trastornos del desarrollo intelectual, tamiz, errores innatos del metabolismo, metabolómica.

RESUMEN

Objetivo. Los errores innatos del metabolismo (EIM) son condiciones genéticas que pueden asociarse con trastornos del desarrollo intelectual (TDI). El objetivo de este estudio es contribuir a la caracterización metabólica de los pacientes con TDI de etiología desconocida. Material y métodos. Se realizará un tamiz metabólico mediante espectrometría de masas-tándem y fluorometría para descartar EIM; además, se analizará el perfil metabolómico de los pacientes con TDI. Conclusión. La identificación de perfiles metabolómicos asociados con los TDI de etiología desconocida contribuirá al desarrollo de nuevos esquemas diagnósticos y terapéuticos para la prevención y tratamiento de los TDI en México.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Ghosh A, Schlecht H, Heptinstall LE, Bassett JK, Cartwright E, Bhaskar SS, et al. Diagnosing childhood-onset inborn errors of metabolism by next-generation sequencing. Arch Dis Child 2017. https://doi.org/10.1136/ archdischild-2017-312738

  2. Alves V, Villaverde-Hueso A, Hens M, Morales-Piga A, Abaitua I, Posada de la Paz M. Public Health research on rare diseases. Georgian Med News 2011;(193):11-16.

  3. Sayson B, Popurs MA, Lafek M, Berkow R, Stockler-Ipsiroglu S, van Karnebeek CD. Retrospective analysis supports algorithm as efficient diagnostic approach to treatable intellectual developmental disabilities. Mol Genet Metab 2015;115(1):1-9. https://doi.org/10.1016/j.ymgme.2015.03.001

  4. Therrell BL, Padilla CD, Loeber JG, Kneisser I, Saadallah A, Borrajo GJ, et al. Current status of newborn screening worldwide: 2015. Semin Perinatol 2015;39(3):171-187. https://doi.org/10.1053/j.semperi.2015.03.002

  5. Ibarra-González I, Fernández-Lainez C, Belmont-Martínez L, Guillén- López S, Monroy-Santoyo S, Vela-Amieva M. Characterization of inborn errors of intermediary metabolism in Mexican patients. An Pediatr (Barc) 2014;80(5):310-316. https://doi.org/10.1016/j.anpedi.2013.09.003

  6. Lazcano-Ponce E, Katz G, Rodríguez-Valentín R, de Castro F, Allen-Leigh B, Márquez-Caraveo ME, et al. The intellectual developmental disorders Mexico study: situational diagnosis, burden, genomics and intervention proposal. Salud Publica Mex 2016;58(6):694-707. https://doi.org/10.21149/ spm.v58i6.8267

  7. van Karnebeek CD, Shevell M, Zschocke J, Moeschler JB, Stockler S. The metabolic evaluation of the child with an intellectual developmental disorder: diagnostic algorithm for identification of treatable causes and new digital resource. Mol Genet Metab 2014;111(4):428-438. https://doi. org/10.1016/j.ymgme.2014.01.011

  8. García-Cazorla A, Wolf NI, Serrano M, Moog U, Pérez-Dueñas B, Póo P, et al. Mental retardation and inborn errors of metabolism. J Inherit Metab Dis 2009; 32(5):597-608. https://doi.org/10.1007/s10545-009-0922-5

  9. Saudubray JM. Neurometabolic disorders. J Inherit Metab Dis 2009;32(5):595-596. https://doi.org/10.1007/s10545-009-9958-9

  10. Wang H, Wang X, Li Y, Dai W, Jiang D, Zhang X, et al. Screening for inherited metabolic diseases using gas chromatography-tandem mass spectrometry (GC-MS/MS) in Sichuan, China. Biomed Chromatogr 2017;31(4):e3847. https://doi.org/10.1002/bmc.3847

  11. Hope S, Johannessen CH, Aanonsen NO, Strømme P. The investigation of inborn errors of metabolism as an underlying cause of idiopathic intellectual disability in adults in Norway. Eur J Neurol 2016;23(suppl 1):36-44. https://doi.org/10.1111/ene.12884

  12. Wilcken B, Wiley V. Fifty years of newborn screening. J Paediatr Child Health 2015;51(1):103-107. https://doi.org/10.1111/jpc.12817

  13. Chace DH, Hannon WH. Technological journey from colorimetric to tandem mass spectrometric measurements in the diagnostic investigation for phenylketonuria. JIEMS 2016;4:1-11. https://doi. org/10.1177/2326409816671733

  14. Vela-Amieva M, Belmont Martínez L, Ibarra González I, Fernández Lainez C. Variabilidad interinstitucional del tamiz neonatal en México. Bol Med Hosp Infant Mex 2009;66:431-439.

  15. Borelli V, Vanhooren V, Lonardi E, Reiding KR, Capri M, Libert E, et al. Plasma N-Glycome Signature of Down Syndrome. J Proteome Res 2015;14(10):4232-4245. https://doi.org/10.1021/acs.jproteome.5b00356

  16. He Y, Yu Z, Giegling I, Xie L, Hartmann AM, Prehn C, et al. Schizophrenia shows a unique metabolomics signature in plasma. Transl Psychiatry 2012;2:e149. https://doi.org/10.1038/tp.2012.76

  17. Wang H, Liang S, Wang M, Gao J, Sun C, Wang J, et al. Potential serum biomarkers from a metabolomics study of autism. J Psychiatry Neurosci 2016;41(1):27-37. https://doi.org/10.1503/jpn.140009

  18. Bernini P, Bertini I, Luchinat C, Nincheri P, Staderini S, Turano P. Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks. J Biomol NMR 2011;49(3-4):231- 243. https://doi.org/10.1007/s10858-011-9489-1

  19. Zhao YY. Metabolomics in chronic kidney disease. Clin Chim Acta 2013;25:59-69. https://doi.org/10.1016/j.cca.2013.03.033

  20. Vidal M, Cusick ME, Barabási AL. Interactome networks and human disease. Cell 2011;144(6):986-998. https://doi.org/10.1016/j.cell.2011.02.016.

  21. Chace DH, DiPerna JC, Mitchell BL, Sgroi B, Hofman LF, Naylor EW. Electrospray tandem mass spectrometry for analysis of acylcarnitines in dried postmortem blood specimens collected at autopsy from infants with unexplained cause of death. Clin Chem 2001;47(7):1166-1182.

  22. Xia J, Wishart DS. Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis. Curr Protoc Bioinformatics 2016;55:14.10.1- 14.10.91. https://doi.org/10.1002/cpbi.11

  23. Castro F, Rojas R, Villalobos A, Allen B, Hubert C, Romero M, et al. Methodological bases and implementation results of Mexico’s National Survey of Children and Women 2015. Salud Publica Mex 2016;58(6):676- 684. https://doi.org/10.21149/spm.v58i6.8192

  24. Tebani A, Abily-Donval L, Afonso C, Marret S, Bekri S. Clinical Metabolomics: The New Metabolic Window for Inborn Errors of Metabolism Investigations in the Post-Genomic Era. Int J Mol Sci 2016; 17(7):1167. https://doi.org/10.3390/ijms17071167

  25. Roberts LD, Souza AL, Gerszten RE, Clish CB. Targeted metabolomics. Curr Protoc Mol Biol 2012; 98:30.2:30.2.1–30.2.24. https://doi. org/10.1002/0471142727.mb3002s98




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

salud publica mex. 2017;59

ARTíCULOS SIMILARES

CARGANDO ...