medigraphic.com
ENGLISH

Gaceta Médica de México

ISSN 0016-3813 (Impreso)
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2018, Número 2

<< Anterior Siguiente >>

Gac Med Mex 2018; 154 (2)


Asociación de leptina con factores cardiometabólicos en escolares y adolescentes con hiperplasia suprarrenal congénita

Zurita-Cruz JN, Villasís-Keever MÁ, Damasio-Santana L, Manuel-Apolinar L, Ferrusca-Ceja R, Nishimura-Meguro E, Rivera-Hernández AJ, Garrido-Magaña E
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 34
Paginas: 202-208
Archivo PDF: 200.46 Kb.


PALABRAS CLAVE

Hiperplasia suprarrenal congénita, Leptina, Pediatría.

RESUMEN

Introducción: En la hiperplasia suprarrenal congénita (HSC), la obesidad, la hiperinsulinemia y los niveles de leptina se encuentran incrementados. Objetivo: Identificar la frecuencia de los factores de riesgo cardiometabólico (FRC) en niños y adolescentes con HSC y explorar la relación con los niveles de leptina. Método: Estudio transversal de 40 pacientes a quienes se realizó somatometría y evaluación de glucosa, insulina, triglicéridos, 17-hidroxiprogesterona, leptina, colesterol HDL y LDL en ayuno. Los pacientes fueron clasificados por el número de FRC y se analizaron los niveles de leptina con Kruskal-Wallis. Se aplicó correlación de Pearson entre la leptina, puntuación Z del índice de masa corporal (zIMC) y porcentaje de grasa corporal. Resultados: 50 % de los pacientes presentó obesidad y sobrepeso, 59 % hipertrigliceridemia, 40 % hipoalfalipoproteinemia, 27.5 % colesterol LDL alto y 22.5 % resistencia a la insulina. Hubo correlación positiva entre leptina y porcentaje de grasa corporal (r = 0.64), el zIMC (r = 0.55) y el número de FRC (r = 0.65). En el análisis multivariado ajustado por obesidad, los niveles de leptina se asociaron con el número de FRC. Conclusión: La HSC tuvo alta frecuencia de FRC y al parecer la leptina se asoció con perfil cardiometabólico más adverso en sujetos con obesidad y sobrepeso.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Speiser PW, White PC. Congenital adrenal hyperplasia. N Engl J Med. 2003;349:776-788.

  2. Forest J, Maguelone G. Recent advances in the diagnosis and management of congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Hum Reprod Update 2004;10:469-485.

  3. Speiser L, Azziz R, Baskin L, Ghizzoni L, Hensle T, Merke D, et al. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2010;95:4133-4160.

  4. Kim J, Choi J, Kang E, Kim Y, Lee B, Yoo H. Long-term consequences of congenital adrenal hyperplasia due to classic 21-hydroxylase deficiency in adolescents and adults. Exp Clin Endocrinol Diabetes. 2017;125:196-201

  5. Sartorato P, Zulian E, Benedini S, Mariniello B, Schiavi F, Bilora F, et al. Cardiovascular risk factors and ultrasound evaluation of intima-media thickness at common carotids, carotid bulbs, and femoral and abdominal aorta arteries in patients with classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrinol Metab. 2007;92:1015-1018.

  6. Arlt W, Willis D, Wild S, Krone N, Doherty E, Hahner S, et al. Health status of adults with congenital adrenal hyperplasia: a cohort study of 203 patients. J Clin Endocrinol Metab. 2010;95 5110-5121.

  7. Falhammar H, Frisén L, Hirschberg A, Norrby C, Almqvist C, Nordenskjöld A, et al. Increased cardiovascular and metabolic morbidity in patients with 21-hydroxylase deficiency: a Swedish population-based national cohort study. J Clin Endocrinol Metab. 2015;100:3520-3528.

  8. Völkl T, Simm D, Beier C, Dörr H. Obesity among children and adolescents with classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Pediatrics. 2006;117:e98-e105.

  9. Cornean R, Hindmarsh P, Brook C. Obesity in 21-hydroxylase deficient patients. Arch Dis Child. 1998;78:261-263.

  10. Baptista C. Leptina. Acta Pediatr Port. 2002;15:281-285.

  11. Moran O, Phillip M. Leptin: obesity, diabetes and other peripheral effects-a review. Pediatr Diabetes. 2003;4:101-109.

  12. Steinberger J, Steffen L, Jacobs D, Moran A, Hong C, Sinaiko A. Relation of leptin to insulin resistance syndrome in children. Obesity Res. 2003;11:1124-1130.

  13. Pilcová R, Sulcová J, Hill M, Bláha P, Lisá L. Leptin levels in obese children: effects of gender, weight reduction and androgens. Physiol Res. 2003;52:53-60.

  14. Sanchez-Garrido M, Tena-Sempere M. Metabolic control of puberty: roles of leptin and kisspeptins. Horm Behav. 2013;64:187-194.

  15. Garcia-Mayor R, Andrade M, Rios M, Lage M, Dieguez C, Casanueva F. Serum leptin levels in normal children: relationship to age, gender, body mass index, pituitary-gonadal hormones, and pubertal stage. J Clin Endocrinol Metab. 1997;82:2849-2855.

  16. Charmandari E, Weise M, Bornstein S, Eisenhofer G, Keil M, Chrousos G, et al.Children with classic congenital adrenal hyperplasia have elevated serum leptin concentrations and insulin resistance: potential clinical implications. J Clin Endocrinol Metab 2002;87:2114-2120.

  17. Radziuk J. Insulin sensivity and its measurement: structural commonalities among the methodos. J Clin Endocrinol Metab 2000;85:4426-4433.

  18. National High Blood Pressure Education Program Working Group on Hypertension Control in Children and Adolescents. Update on the 1987 Task Force Report on High Blood Pressure in Children and Adolescents: a working group report from the National High Blood Pressure Education Program. Pediatrics. 1996;98:649-658.

  19. Zimmet P, Alberti G, Kaufman F, Tajima N, Silink M, Arslanian S, et al. The metabolic syndrome in children and adolescents. Lancet 2007;369:2059-2061.

  20. de Ferranti S, Gauvreau K, Ludwig D, Neufeld E, Newburger J, Rifai N. Prevalence of the metabolic syndrome in American adolescents: findings from the Third National Health and Nutrition Examination Survey. Circulation. 2004;110:2494-2497.

  21. García-Cuartero B, García-Lacalle C, Jiménez-Lobo C, González-Vergaz A, Calvo-Rey C, Alcázar-Villar M, et al. Indice HOMA y QUICKI, insulina y péptido C en niños sanos. Puntos de corte de riesgo cardiovascular. An Pediatr. 2007;66:481-490.

  22. Okasora K, Takaya R, Tokuda M, Fukunaga Y, Oguni T, Tanaka H, et al. Comparison of bioelectrical impedance analysis and dual energy X-ray absorptiometry for assessment of body composition in children. Pediatr Int. 1999;41(2):121-125.

  23. Taylor R, Jones I, Williams S, Goulding A. Body fat percentages measured by dual-energy X-ray absorptiometry corresponding to recently recommended body mass index cutoffs for overweight and obesity in children and adolescents aged 3-18 y. Am J Clin Nutr. 2002; 76(6):1416-1421.

  24. Gutiérrez JP, Rivera-Dommarco J, Shamah-Levy T, Villalpando-Hernández S, Franco A, Cuevas-Nasu L, et al. Encuesta Nacional de Salud y Nutrición. México: Instituto Nacional de Salud Pública; 2012. p. 149-152. Disponible en: http://ensanut insp.mx/informes/ENSANUT2012ResultadosNacionales. pdf

  25. Caprio S, Tamborlane W. Effect of puberty on insulin action and secretion. Semin Reprod Endocrinol. 1994;12:90-96.

  26. Travers S, Jeffers B, Bloch C, Hill J, Eckel R. Gender and tanner stage differences in body composition and insulin sensitivity in early pubertal children. J Clin Endocrinol Metab. 1995;80:172–178.

  27. Moran A, Jacobs D, Jr, Steinberger J, Hong C, Prineas R, Luepker R, et al. Insulin resistance during puberty: results from clamp studies in 357 children. Diabetes. 1999;48:2039-2044.

  28. L’Allemand D, Penhoat A, Lebrethon M, Ardevol R, Baehr V, Oelkers W, et al. Insulin-like growth factors enhance steroidogenic enzyme and corticotropin receptor messenger ribonucleic acid levels and corticotropin steroidogenic responsiveness in cultured human adrenocortical cells. J Clin Endocrinol Metab. 1996;81:3892-3897.

  29. Biason-Lauber A, Zachmann M, Schoenle E. Effect of leptin on CYP17 enzymatic activities in human adrenal cells: new insight in the onset of adrenarche. Endocrinology. 2000;141:1446-1454.

  30. Völkl T, Simm D, Körner A, Rascher W, Kiess W, Kratzsch J, et al. Does an altered leptin axis play a role in obesity among children and adolescents with classical congenital adrenal hyperplasia due to 21-hydroxylase deficiency? Eur J Endocrinol. 2009;160:239-247.

  31. Hsueh W, Lyon C, Quinones M. Insulin resistance and the endothelium. Am J Med. 2004;117:109-117

  32. Merke D, Chrousos G, Eisenhofer G, Weise M, Keil M, Rogol A, et al. Adrenomedullary dysplasia and hypofunction in patients with classic 21-hydroxylase deficiency. N Engl J Med. 2000;343:1362-1368.

  33. Gonzaga N, Medeiros C, de Carvalho D, Alves J. Leptin and cardiometabolic risk factors in obese children and adolescents. J Paediatr Child Health. 2014;50(9):707-712.

  34. Ibáñez L, Ong K, López-Bermejo A, Dunger D, de Zegher F. Hyperinsulinaemic androgen excess in adolescent girls. Nat Rev Endocrinol. 2014;10(8):499-508.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Gac Med Mex. 2018;154

ARTíCULOS SIMILARES

CARGANDO ...