Entrar/Registro  
INICIO ENGLISH
 
Gaceta Médica de México
   
MENÚ

Contenido por año, Vol. y Num.

Índice de este artículo

Información General

Instrucciones para Autores

Mensajes al Editor

Directorio






>Revistas >Gaceta Médica de México >Año 2018, No. 3


Rodríguez J, Prieto S, Ramírez L
Evaluación de la dinámica cardiaca con la aplicación de metodologías basadas en entropía proporcional y la ley Zipf-Mandelbrot
Gac Med Mex 2018; 154 (3)

Idioma: Español
Referencias bibliográficas: 41
Paginas: 287-294
Archivo PDF: 309.42 Kb.


Texto completo




RESUMEN

Introducción: Las metodologías fisicomatemáticas son de utilidad para el diagnóstico de la dinámica cardiaca. Objetivo: Comparar la aplicación de dos métodos matemáticos de evaluación de la dinámica cardiaca. Una basada en proporciones de la entropía y otra en la ley de Zipf-Mandelbrot. Método: Se tomaron 10 registros Holter, cinco de pacientes con enfermedad aguda y cinco normales. Se construyó un atractor numérico, se evaluó la probabilidad, entropía y proporciones de entropía. Para aplicar la segunda metodología se agruparon los valores de frecuencia cardiaca en rangos de 15 latidos/minuto y se aplicó la ley de Zipf-Mandelbrot para obtener la dimensión fractal estadística. Finalmente se comparó la evaluación matemática obtenida por ambas metodologías. Resultados: La metodología basada en las proporciones de la entropía diferenció normalidad, enfermedad y estados intermedios. La segunda metodología diferenció normalıdad de enfermedad aguda mediante el grado de complejidad. Conclusión: Ambas metodologías establecen evaluaciones de ayuda diagnóstica de la dinámica cardiaca de forma objetiva y reproducible. La entropía proporcional permite cuantificar normalidad, enfermedad y evolución entre estados con carácter predictivo y mayor precisión.


Palabras clave: Frecuencia cardiaca, Entropía, Métodos matemáticos, Dinámica cardiaca.


REFERENCIAS

  1. Devaney RL, Siegel PB, Mallinckrodt AJ, McKay S. A first course in chaotic dynamical systems: theory and experiment. EE. UU.: Addison- Wesley; 1992.

  2. Peitgen H. Length area and dimension. Measuring complexity and scalling properties. En: Chaos and fractals: new frontiers of science. EE. UU.: Springer-Verlag; 1992.

  3. Goldberger A, Amaral LA, Hausdorff JM, Ivanov PC, Peng CK, Stanley HE. Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci USA. 2002; 99(Suppl 1):2466-2472.

  4. Laplace Pierre. Ensayo filósofico sobre las probabilidades. Barcelona: Altaya; 1995.

  5. Matvéev A. Física molecular. Moscú: Mir; 1987.

  6. Tolman R. Principles of statistical mechanics. EE. UU.: Dover Publications; 1979.

  7. Feynman RN, Leighton RB, Sands M. Leyes de la termodinámica. En: Física. Volumen 1. EE. UU.: Addison-Wesley; 1964.

  8. Pincus SM, Gladstone IM, Ehrenkranz RA. A regularity statistic for medical data analysis. J Clinmonit. 1991;7:335-45.

  9. Guillén P, Vallverdú M, Rojas R, Jugo D, Carrasco H, Caminal P. Dinámica no lineal para caracterizar la variabilidad del ritmo cardiaco en pacientes chagásticos. En: Memorias del II Congreso Latinoamericano de Ingeniería Biomédica, Cuba, 2001. Ciencia. 2003;11(4):276-283.G

  10. Vikman S, Mäkikallio TH, Yli-Mäyry S, Pikkujämsä S, Koivisto AM, Reinikainen P, et al. Altered complexity and correlation properties of R-R interval dynamics before the spontaneous onset of paroxysmal atrial fibrillation. Circulation. 1999;100:2079-2084.

  11. Zipf G. Human behavior and the principle of least effort: an introduction to human ecology. EE. UU.: Addison-Wesley; 1949.

  12. Mandelbrot BB. Scaling and power laws without geometry. En: The fractal geometry of nature. EE. UU.G: Freeman; 1972.

  13. Mandelbrot BB. Árboles jerárquicos o de clasificación, y la dimensión. En: Los objetos fractales. Barcelona: Tusquets; 2000.

  14. Mandelbrot B. Structure formelle des textes et comunication. World; 1954;10(1):1-27.

  15. Organización Mundial de la Salud. Enfermedades cardiovasculares. Ginebra, Suiza: OMS; 2011.

  16. Norris PR, Anderson SM, Jenkins JM, Williams AE, Morris JA. Heart rate multiscale entropy at three hours predicts hospital mortality in 3,154 trauma patients. Shock. 2008;30:17-22.

  17. Huikuri HV, Mäkikallio TH, Peng CK, Goldberger AL, Hintze U, Moller M. Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation. 2000;101:47-53.

  18. Mäkikallio TH, Hoiber S, Kober L, Torp-Pedersen C, Peng CK, Goldberger AL, et al. Fractal analysis of heart rate dynamics as a predictor of mortality in patients with depressed left ventricular function after acute myocardial infarction. TRACE Investigators. TRAndolapril Cardiac Evaluation. Am J Cardiol. 1999;83:836-839.

  19. Rodríguez J, Correa C, Melo M, Domínguez D, Prieto S, Cardona DM, et al. Chaotic cardiac law: developing predictions of clinical application. J Med Sci. 2013;4(2):79-84.

  20. Perkiömäki JS, Mäkikallio TH, Huikuri HV. Fractal and complexity measures of heart rate variability. Clin Exp Hypertens. 2005;27:149-158.

  21. Buccelletti F, Bocci MG, Gilardi E, Fiore V, Calcinaro S, Fragnoli C, et al. Linear and nonlinear heart rate variability indexes in clinical practice. Comput Math Methods Med. 2012;2012:219080.

  22. Rodríguez J, Prieto S, Domínguez D, Melo M, Mendoza F, Correa C, et al. Mathematical-physical prediction of cardiac dynamics using the proportional entropy of dynamic systems. J Med Med Sci. 2013; 4(8):370-381.

  23. Rodríguez J, Prieto S, Correa C, Soracipa Y, Aguirre G, Méndez L. Proportional entropy applied to the clinical diagnostic of cardiac dynamic: blind study with 600 holter. En: Memorias The 61st Annual Conference of the Israel Heart Society in association with The Israel Society of Cardiothoracic Surgery, 2014.

  24. Rodríguez J, Prieto S, Bernal P, Izasa D, Salazar G, Correa C, et al. Entropía proporcional aplicada a la evolución de la dinámica cardiaca. Predicciones de aplicación clínica. En: Rodríguez LG, coordinador. La emergencia de los enfoques de la complejidad en América Latina: implicancias políticas, epistemológicas y metodológicas para las ciencias del siglo XXI. Tomo 1. Buenos Aires: Comunidad Editora Latinoamericana; 2015.

  25. Rodríguez J. Mathematics physical assessment of cardiac dynamics based on theory of probability and proportions of entropy in the intensive care unit for patients with arrhythmia. Reino Unido: Medical Physics; 2015.

  26. Rodríguez J, Prieto S, Correa C, Mendoza F, Weiz G, Soracipa Y, et al. Physical mathematical evaluation of the cardiac dynamic applying the Zipf-Mandelbrot law. JMP. 2015;6:1881-1888.

  27. Rodríguez J. Entropía proporcional de los sistemas dinámicos cardiacos. Predicciones físicas y matemáticas de la dinámica cardiaca de aplicación clínica. Rev Col Cardiol. 2010;17(3):115-129.

  28. Rodríguez J. Comportamiento fractal del repertorio T específico contra el alergeno Poa p9. Rev Fac Med Univ Nac Colomb. 2005;53:72-78.

  29. Rodríguez J, Prieto S, Ortíz L, Bautista A, Bernal P, Avilán N. Diagnóstico matemático de la monitoria fetal aplicando la ley de Zipf-Mandelbrot. Rev Fac Med Univ Nac Colomb. 2006;54(2): 96-107.

  30. Borgatta L, Shrout PE, Divon MY. Reliability and reproducibility of nonstress test readings. Am J Obstet Gynecol. 1988;159(3):554-558.

  31. Rodríguez J. Dynamical systems theory and Zipf-Mandelbrot law applied to the development of a fetal monitoring diagnostic methodology. En: Memorias del XVIII FIGO World Congress of Gynecology and Obstetrics, Kuala lumpur, Malaysia, 2006.

  32. Baumert M, Baier V, Haueisen J, Wessel N, Meyerfeldt U, Schirdewan A, et al. Forecasting of life threatening arrhythmias using the compression entropy of heart rate. Methods Inf Med. 2004;43:202-206.

  33. Voss A, Schulz S, Schroeder R, Baumert M, Caminal P. Methods derived from nonlinear dynamics for analysing heart rate variability. Phil Trans A Math Phys Eng Sci. 2009;367:277-296.

  34. Rodríguez J, Prieto S, Correa C, Pérez C, Mora J, Bravo J, et al. Predictions of CD4 lymphocytes’ count in HIV patients from complete blood count. BMC Med Phys. 2013;13:3.

  35. Rodríguez J. Teoría de unión al HLA clase II: teoría de probabilidad, combinatoria y entropía aplicadas a secuencias peptídicas. Inmunologia. 2008;27(4):151-166.

  36. Rodríguez J, Bernal P, Prieto S, Correa C. Teoría de péptidos de alta unión de malaria al glóbulo rojo. Predicciones teóricas de nuevos péptidos de unión y mutaciones teóricas predictivas de aminoácidos críticos. Inmunologia. 2010;29(1):7-19.

  37. Rodríguez J. Método para la predicción de la dinámica temporal de la malaria en los municipios de Colombia. Rev Panam Salud Pública. 2010;27(3):211-218.

  38. Rodríguez J, Prieto S, Correa C, Bernal P, Puerta G, Vitery S, et al. Theoretical generalization of normal and sick coronary arteries with fractal dimensions and the arterial intrinsic mathematical harmony. BMC Med Phys. 2010;10:1.

  39. Prieto S, Rodríguez J, Correa C, Soracipa Y. Diagnosis of cervical cells based on fractal and euclidian geometrical measurements: intrinsic geometric cellular organization. BMC Med Phys. 2014;14:2.

  40. Rodríguez J. Dynamical systems applied to dynamic variables of patients from the intensive care unit (ICU): physical and mathematical mortality predictions on ICU. J Med Sci. 2015;6(8):102-108.

  41. Rodríguez J, Prieto S, Flórez M, Alarcón C, López R, Aguirre G, et al. Physical-mathematical diagnosis of cardiac dynamic on neonatal sepsis: predictions of clinical application. J Med Sci. 2014;5(5):102-108.



>Revistas >Gaceta Médica de México >Año2018, No. 3
 

· Indice de Publicaciones 
· ligas de Interes 






       
Derechos Resevados 2019