medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2019, Número 1

<< Anterior Siguiente >>

TIP Rev Esp Cienc Quim Biol 2019; 22 (1)


Mecanismos de autofosforilación y transfosforilación en sistemas de dos componentes bacterianos

Terán-Melo JL, Rodríguez-Rangel C, Georgellis D, Álvarez AF
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 57
Paginas: 1-11
Archivo PDF: 843.34 Kb.


PALABRAS CLAVE

cinasa sensora, autofosforilación, transfosforilación, intermolecular, intramolecular.

RESUMEN

Los Sistemas de señalización de Dos Componentes (SDCs) permiten a las bacterias detectar estímulos ambientales y responder a estos de manera adaptativa. Estos sistemas de transducción de señales se basan en la autofosforilación y transferencia de grupos fosforilo entre residuos de histidina y aspartato de una proteína cinasa sensora y un regulador de respuesta. Cuando la cinasa sensora percibe un estímulo específico se autofosforila, en una reacción que puede ser inter o intramolecular, y transfosforila a su regulador de respuesta cognado, que actúa generalmente como regulador transcripcional para ejercer una respuesta fisiológica. Con frecuencia, en ausencia de estímulo, la misma cinasa sensora se encarga de desfosforilar a su regulador de respuesta cognado. Además, algunas cinasas sensoras tienen módulos adicionales que participan en un fosforelevo que termina en la fosforilación del regulador de respuesta, y en un fosforelevo reverso que permite su desfosforilación. Al igual que en la autofosforilación, las trasferencias de grupos fosforilo implicadas en el fosforelevo y el fosforelevo reverso pueden ser inter o intramoleculares. En esta revisión exponemos algunas de las más importantes características de los SDCs bacterianos, poniendo especial énfasis en los procesos de autofosforilación y fosfotransferencia.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Aguilar, P.S., Hernández-Arriaga, A. M., Cybulski, L. E., Erazo, A. C., & de Mendoza, D. (2001). Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. The EMBO Journal, 20(7), 1681–1691. https://doi.org/10.1093/ emboj/20.7.1681

  2. Álvarez, A. F., Barba-Ostria, C., Silva-Jiménez, H., & Georgellis, D. (2016). Organization and mode of action of two component system signaling circuits from the various kingdoms of life. Environmental Microbiology, 18(10), 3210–3226. https://doi.org/10.1111/1462-2920.13397

  3. Álvarez, A. F., & Georgellis, D. (2010). In vitro and in vivo analysis of the ArcB/A redox signaling pathway. Methods in Enzymology, 471(10), 205–228. https://doi. org/10.1016/S0076-6879(10)71012-0

  4. Ashby, M. K. (2006). Distribution, structure and diversity of “bacterial” genes encoding two-component proteins in the Euryarchaeota. Archaea (Vancouver, B.C.), 2(1), 11–30. https://doi.org/10.1155/2006/562404

  5. Ashenberg, O., Keating, A. E., & Laub, M. T. (2013). Helix bundle loops determine whether histidine kinases autophosphorylate in cis or in trans. Journal of Molecular Biology, 425(7), 1198–1209. https://doi.org/10.1016/j. jmb.2013.01.011

  6. Bourret, R. B., Hess, J. F., Borkovich, K. A., Pakula, A. A., & Simon, M. I. (1989). Protein phosphorylation in chemotaxis and two-component regulatory systems of bacteria. The Journal of Biological Chemistry, 264(13), 7085–7088. Retrieved from http://www.ncbi.nlm.nih. gov/pubmed/2540171

  7. Brencic, A., Xia, Q., & Winans, S. C. (2004). VirA of Agrobacterium tumefaciens is an intradimer transphosphorylase and can actively block vir gene expression in the absence of phenolic signals. Molecular Microbiology, 52(5), 1349–1362. https://doi.org/10.1111/ j.1365-2958.2004.04057.x

  8. Burbulys, D., Trach, K. A., & Hoch, J. A. (1991). Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell, 64(3), 545–552. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1846779

  9. Casino, P., Rubio, V., & Marina, A. (2009). Structural insight into partner specificity and phosphoryl transfer in twocomponent signal transduction. Cell, 139(2), 325–336. https://doi.org/10.1016/j.cell.2009.08.032

  10. Catlett, N. L., Yoder, O. C., & Turgeon, B. G. (2003). Wholegenome analysis of two-component signal transduction genes in fungal pathogens. Eukaryotic Cell, 2(6), 1151– 1161. https://doi.org/10.1128/EC.2.6.1151-1161.2003

  11. Cotter, P. A., & Jones, A. M. (2003). Phosphorelay control of virulence gene expression in Bordetella. Trends in Microbiology, 11(8), 367–373. https://doi.org/10.1016/ S0966-842X(03)00156-2

  12. Devi, S. N., Kiehler, B., Haggett, L., & Fujita, M. (2015). Evidence that autophosphorylation of the major sporulation kinase in Bacillus subtilis is able to occur in trans. Journal of Bacteriology, 197(16), 2675–2684. https://doi.org/10.1128/JB.00257-15

  13. Dutta, R., Qin, L., & Inouye, M. (1999). Histidine kinases: diversity of domain organization. Molecular Microbiology, 34(4), 633–640. https://doi.org/10.1046/ j.1365-2958.1999.01646.x

  14. Eguchi, Y., & Utsumi, R. (2014). Alkali metals in addition to acidic pH activate the EvgS histidine kinase sensor in Escherichia coli. Journal of Bacteriology, 196(17), 3140–3149. https://doi.org/10.1128/JB.01742-14

  15. Filippou, P. S., Kasemian, L. D., Panagiotidis, C. A., & Kyriakidis, D. A. (2008). Functional characterization of the histidine kinase of the E. coli two-component signal transduction system AtoS-AtoC. Biochimica et Biophysica Acta, 1780(9), 1023–1031. https://doi. org/10.1016/j.bbagen.2008.05.002

  16. Forst, S. A., & Roberts, D. L. (1994). Signal transduction by the EnvZ-OmpR phosphotransfer system in bacteria. Research in Microbiology, 145(5–6), 363–373. https:// doi.org/10.1016/0923-2508(94)90083-3

  17. Galperin, M. Y. (2005). A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiology, 5, 35. https://doi.org/10.1186/1471-2180-5-35

  18. Gao, R., & Stock, A. M. (2009). Biological insights from structures of two-component proteins. Annual Review of Microbiology, 63, 133–154. https://doi.org/10.1146/ annurev.micro.091208.073214

  19. George Cisar, E. A., Geisinger, E., Muir, T. W., & Novick, R. P. (2009). Symmetric signalling within asymmetric dimers of the Staphylococcus aureus receptor histidine kinase AgrC. Molecular Microbiology, 74(1), 44–57. https://doi.org/10.1111/j.1365-2958.2009.06849.x

  20. Georgellis, D., Kwon, O., De Wulf, P., & Lin, E. C. (1998). Signal decay through a reverse phosphorelay in the Arc two-component signal transduction system. J. Biol. Chem., 273(49), 32864–32869. https://doi.org/10.1074/ jbc.273.49.32864

  21. Georgellis, D., Kwon, O., & Lin, E. C. (2001). Quinones as the redox signal for the Arc two-component system of bacteria. Science (New York, N.Y.), 292(5525), 2314– 2316. https://doi.org/10.1126/science.1059361

  22. Georgellis, D., Lynch, A. S., & Lin, E. C. (1997). In vitro phosphorylation study of the Arc two-component signal transduction system of Escherichia coli. J. Bacteriol., 179(17), 5429–5435. https://doi.org/10.1128/ jb.179.17.5429-5435.1997

  23. Hutchings, M. I., Hong, H.-J., & Buttner, M. J. (2006). The vancomycin resistance VanRS two-component signal transduction system of Streptomyces coelicolor. Molecular Microbiology, 59(3), 923–935. https://doi. org/10.1111/j.1365-2958.2005.04953.x

  24. Huynh, T. N., Noriega, C. E., & Stewart, V. (2010). Conserved mechanism for sensor phosphatase control of twocomponent signaling revealed in the nitrate sensor NarX. Proc. Natl. Acad. Sci. U S A, 107(49), 21140–21145. https://doi.org/10.1073/pnas.1013081107

  25. Huynh, T. N., & Stewart, V. (2011). Negative control in twocomponent signal transduction by transmitter phosphatase activity. Molecular Microbiology, 82(2), 275–286. https:// doi.org/10.1111/j.1365-2958.2011.07829.x

  26. Iuchi, S., & Lin, E. C. C. (1993). Adaptation of Escherichia coli to redox environments by gene expression. Molecular Microbiology, 9(1), 9–15. https://doi. org/10.1111/j.1365-2958.1993.tb01664.x

  27. Jiang, M., Shao, W., Perego, M., & Hoch, J. A. (2000). Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Molecular Microbiology, 38(3), 535–542. https://doi.org/10.1046/ j.1365-2958.2000.02148.x

  28. Jourlin, C., Ansaldi, M., & Mejean, V. (1997). Transphosphorylation of the TorR response regulator requires the three phosphorylation sites of the TorS unorthodox sensor in Escherichia coli. Journal of Molecular Biology, 267(4), 770–777. https://doi. org/10.1006/jmbi.1997.0919

  29. Jovanovic, G., Sheng, X., Ale, A., Feliu, E., Harrington, H. A., Kirk, P., Wiuf, C., Buck, M., & Stumpf, M. P. H. (2015). Phosphorelay of non-orthodox two component systems functions through a bi-molecular mechanism in vivo: the case of ArcB. Mol. BioSyst. Mol. BioSyst, 11(11), 1348– 1359. https://doi.org/10.1039/c4mb00720d

  30. Kenney, L. J. (2010). How important is the phosphatase activity of sensor kinases? Current Opinion in Microbiology, 13(2), 168–176. https://doi.org/10.1016/j. mib.2010.01.013

  31. Kinoshita-Kikuta, E., Kinoshita, E., Eguchi, Y., & Koike, T. (2016). Validation of cis and trans modes in multistep phosphotransfer signaling of bacterial tripartite sensor kinases by using Phos-Tag SDS-PAGE. PLOS ONE, 11(2), e0148294. https://doi.org/10.1371/journal.pone.0148294

  32. Koretke, K. K., Lupas, A. N., Warren, P. V, Rosenberg, M., & Brown, J. R. (2000). Evolution of two-component signal transduction. Molecular Biology and Evolution, 17(12), 1956–1970. https://doi.org/doi.org/10.1093/ oxfordjournals.molbev.a026297

  33. Kwon, O., Georgellis, D., & Lin, E. C. (2000). Phosphorelay as the sole physiological route of signal transmission by the Arc two-component system of Escherichia coli. J. Bacteriol., 182(13), 3858–3862. https://doi.org/10.1128/ JB.182.13.3858-3862.2000

  34. Levit, M., Liu, Y., Surette, M., & Stock, J. (1996). Active Site Interference and Asymmetric Activation in the Chemotaxis Protein Histidine Kinase CheA. Journal of Biological Chemistry, 271(50), 32057–32063. https://doi. org/10.1074/jbc.271.50.32057

  35. Lynch, A. S., & Lin, E. C. (1996). Regulation of gene expression in Escherichia coli. In F. C. Neidhardt, R. Curtis, A. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, & H. E. Umbarger (Eds.), Escherichia coli and Salmonella: Cellular and Molecular Biology (pp. 1526–1538). Washington, DC: Am. Soc. Microbiol.

  36. Malpica, R., Sandoval, G. R., Rodriguez, C., Franco, B., & Georgellis, D. (2006). Signaling by the Arc twocomponent system provides a link between the redox state of the quinone pool and gene expression. Antioxid. Redox Signal, 8(5–6), 781–795. https://doi.org/10.1089/ ars.2006.8.781

  37. Ninfa, E. G., Atkinson, M. R., Kamberov, E. S., & Ninfa, A. J. (1993). Mechanism of autophosphorylation of Escherichia coli nitrogen regulator II (NRII or NtrB): trans-phosphorylation between subunits. Journal of Bacteriology, 175(21), 7024–7032. https://doi. org/10.1128/jb.175.21.7024-7032.1993

  38. Nohno, T., Noji, S., Taniguchi, S., & Saito, T. (1989). The narX and narL genes encoding the nitrate-sensing regulators of Escherichia coli are homologous to a family of prokaryotic two-component regulatory genes. Nucleic Acids Research, 17(8), 2947–2957. Retrieved from http:// www.ncbi.nlm.nih.gov/pubmed/2657652

  39. Peña-Sandoval, G. R., & Georgellis, D. (2010). The ArcB sensor kinase of Escherichia coli autophosphorylates by an intramolecular reaction. Journal of Bacteriology, 192(6), 1735–1739. https://doi.org/10.1128/JB.01401- 09

  40. Peña-Sandoval, G. R., Kwon, O., & Georgellis, D. (2005). Requirement of the receiver and phosphotransfer domains of ArcB for efficient dephosphorylation of phosphorylated ArcA in vivo. Journal of Bacteriology, 187(9), 3267– 3272. https://doi.org/10.1128/JB.187.9.3267-3272.2005

  41. Santos, J. L., & Shiozaki, K. (2001). Fungal histidine kinases. Science’s STKE, 2001(98), re1. https://doi.org/10.1126/ stke.2001.98.re1

  42. Schaller, G. E., Shiu, S.-H., & Armitage, J. P. (2011). Twocomponent systems and their co-option for eukaryotic signal transduction. Current Biology : CB, 21(9), R320- 330. https://doi.org/10.1016/j.cub.2011.02.045

  43. Stock, A. M., Robinson, V. L., & Goudreau, P. N. (2000). Two-component signal transduction. Annual Review of Biochemistry, 69, 183–215. https://doi.org/10.1146/ annurev.biochem.69.1.183

  44. Swanson, R. V, Bourret, R. B., & Simon, M. I. (1993). Intermolecular complementation of the kinase activity of CheA. Molecular Microbiology, 8(3), 435–441. https:// doi.org/10.1111/j.1365-2958.1993.tb01588.x

  45. Takeda, S., Fujisawa, Y., Matsubara, M., Aiba, H., & Mizuno, T. (2001). A novel feature of the multistep phosphorelay in Escherichia coli: a revised model of the RcsC --> YojN --> RcsB signalling pathway implicated in capsular synthesis and swarming behaviour. Molecular Microbiology, 40(2), 440–450. https://doi.org/10.1046/ j.1365-2958.2001.02393.x

  46. Tanaka, T., Saha, S. K., Tomomori, C., Ishima, R., Liu, D., Tong, K. I., Park, H., Dutta, R., Qing, L., Swindells, M. B., Yamazaki, T., Ono, A. M., Kainosho, M., Inouye, M., & Ikura, M. (1998). NMR structure of the histidine kinase domain of the E. coli osmosensor EnvZ. Nature, 396(6706), 88–92. https://doi.org/10.1038/23968

  47. Terán-Melo, J. L., Peña-Sandoval, G. R., Silva-Jiménez, H., Rodríguez, C., Álvarez, A. F., & Georgellis, D. (2018). Routes of phosphoryl group transfer during signal transmission and signal decay in the dimeric sensor histidine kinase ArcB. The Journal of Biological Chemistry, 293(34), 13214–13223. https://doi. org/10.1074/jbc.RA118.003910

  48. Thomason, P., & Kay, R. (2000). Eukaryotic signal transduction via histidine-aspartate phosphorelay. Journal of Cell Science, 113, 3141–3150.

  49. Trajtenberg, F., Graña, M., Ruétalo, N., Botti, H., & Buschiazzo, A. (2010). Structural and enzymatic insights into the ATP binding and autophosphorylation mechanism of a sensor histidine kinase. The Journal of Biological Chemistry, 285(32), 24892–24903. https://doi. org/10.1074/jbc.M110.147843

  50. Uhl, M. A., & Miller, J. F. (1996a). Central role of the BvgS receiver as a phosphorylated intermediate in a complex two-component phosphorelay. The Journal of Biological Chemistry, 271(52), 33176–33180. https://doi. org/10.1074/jbc.271.52.33176

  51. Uhl, M. A., & Miller, J. F. (1996b). Integration of multiple domains in a two-component sensor protein: the Bordetella pertussis BvgAS phosphorelay. The EMBO Journal, 15(5), 1028–1036. https://doi.org/10.1002/j.1460-2075.1996. tb00440.x

  52. Ulrich, L. E., & Zhulin, I. B. (2010). The MiST2 database: a comprehensive genomics resource on microbial signal transduction. Nucleic Acids Research, 38(Database issue), D401-407. https://doi.org/10.1093/nar/gkp940

  53. West, A. H., & Stock, A. M. (2001). Histidine kinases and response regulator proteins in two-component signaling systems. Trends in Biochemical Sciences, 26(6), 369– 376. https://doi.org/10.1016/S0968-0004(01)01852-7

  54. Williams, R. H. N., & Whitworth, D. E. (2010). The genetic organisation of prokaryotic two-component system signalling pathways. BMC Genomics, 11, 720. https://doi. org/10.1186/1471-2164-11-720

  55. Wolanin, P. M., Thomason, P. A., & Stock, J. B. (2002). Histidine protein kinases: key signal transducers outside the animal kingdom. Genome Biology, 3(10), 1–8. https:// doi.org/10.1186/gb-2002-3-10-reviews3013

  56. Wuichet, K., Cantwell, B. J., & Zhulin, I. B. (2010). Evolution and phyletic distribution of two-component signal transduction systems. Current Opinion in Microbiology, 13(2), 219–225. https://doi.org/10.1016/j. mib.2009.12.011

  57. Yang, Y., & Inouye, M. (1991). Intermolecular complementation between two defective mutant signaltransducing receptors of Escherichia coli. Proc. Natl. Acad. Sci. U S A, 88(24), 11057–11061. https://doi. org/10.1073/pnas.88.24.11057




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2019;22

ARTíCULOS SIMILARES

CARGANDO ...