medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2019, Número 1

<< Anterior Siguiente >>

TIP Rev Esp Cienc Quim Biol 2019; 22 (1)


Microdominios membranales bacterianos semejantes a balsas lipídicas

Guzmán-Flores JE, Georgellis D, Álvarez AF
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 60
Paginas: 1-10
Archivo PDF: 994.38 Kb.


PALABRAS CLAVE

bacteria, balsas lipídicas, membranas resistentes a detergentes, flotilina.

RESUMEN

La capacidad de las membranas biológicas para compartimentar diversos procesos fisiológicos como la transducción de señales, tráfico vesicular, entre otros, ha llevado al estudio de estructuras conocidas como balsas lipídicas o microdominios de membrana. Estos microdominios se componen de proteínas y lípidos especializados, los cuales han sido ampliamente descritos en una gran variedad de células eucariotas. Una característica de las balsas lipídicas es el alto grado de empaquetamiento de sus componentes, lo que genera una menor fluidez con respecto al resto de la membrana. La técnica más empleada para caracterizar estos microdominios, es la generación de membranas resistentes a detergentes (DRM-Detergent-Resistant Membranes), la cual aprovecha las características físico-químicas de las balsas lipídicas, cuyos componentes estructurales son resistentes a la solubilización por detergentes. Las proteínas que contienen un dominio conocido como SPFH (Stomatin, Prohibitin, Flotillin, HflK/C) son consideradas como marcadores de balsas lipídicas y se identifican frecuentemente en preparaciones de DRM. Recientemente, la amplia distribución de proteínas con dominios SPFH codificadas en cromosomas bacterianos, ha dirigido el enfoque al estudio de estructuras similares a balsas lipídicas en las membranas bacterianas. En esta revisión se exponen algunos avances recientes en la identificación y estudio de los microdominios de membrana bacterianos similares a balsas lipídicas presentes en eucariontes.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Alfalah, M., Wetzel, G., Fischer, I., Busche, R., Sterchi, E. E., Zimmer, K.-P., Sallman, H.-P., & Naim, H. Y. (2005). A Novel Type of Detergent-resistant Membranes May Contribute to an Early Protein Sorting Event in Epithelial Cells. Journal of Biological Chemistry, 280(52), 42636– 42643. https://doi.org/10.1074/JBC.M505924200

  2. An, D., Na, C., Bielawski, J., Hannun, Y. A., & Kasper, D. L. (2011). Membrane sphingolipids as essential molecular signals for Bacteroides survival in the intestine. Proceedings of the National Academy of Sciences of the United States of America, 108 (Suppl 1), 4666–4671. https://doi.org/10.1073/pnas.1001501107

  3. Babiychuk, E. B., & Draeger, A. (2006). Biochemical characterization of detergent-resistant membranes: a systematic approach. The Biochemical Journal, 397(3), 407–416. https://doi.org/10.1042/BJ20060056

  4. Bach, J. N., & Bramkamp, M. (2013). Flotillins functionally organize the bacterial membrane. Molecular Microbiology, 88(6), 1205–1217. https://doi.org/10.1111/ mmi.12252

  5. Bernal, P., Muñoz-Rojas, J., Hurtado, A., Ramos, J. L., & Segura, A. (2007). A Pseudomonas putida cardiolipin synthesis mutant exhibits increased sensitivity to drugs related to transport functionality. Environmental Microbiology, 9(5), 1135–1145. https://doi.org/10.1111/ j.1462-2920.2006.01236.x

  6. Borner, G. H. H., Sherrier, D. J., Weimar, T., Michaelson, L. V, Hawkins, N. D., Macaskill, A., Napier, J. A., Beale, M. H., Lilley, K. S., & Dupree, P. (2005). Analysis of detergentresistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiology, 137(1), 104–116. https://doi.org/10.1104/pp.104.053041

  7. Browman, D. T., Hoegg, M. B., & Robbins, S. M. (2007, August). The SPFH domain-containing proteins: more than lipid raft markers. Trends in Cell Biology, 17(8), 394-402. https://doi.org/10.1016/j.tcb.2007.06.005

  8. Brown, D. A. (2006). Lipid Rafts, Detergent-Resistant Membranes, and Raft Targeting Signals. Physiology, 21(6), 430–439. https://doi.org/10.1152/physiol.00032.2006

  9. Brown, D. A., & London, E. (1998). Structure and origin of ordered lipid domains in biological membranes. Journal of Membrane Biology, 164(2), 103-114. https://doi. org/10.1007/s002329900397

  10. Brown, D. A., & Rose, J. K. (1992). Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell, 68(3), 533–544. https://doi.org/10.1016/0092-8674(92)90189-J

  11. Carmona-Salazar, L., El Hafidi, M., Enríquez-Arredondo, C., Vázquez-Vázquez, C., González De La Vara, L. E., & Gavilanes-Ruiz, M. (2011). Isolation of detergentresistant membranes from plant photosynthetic and nonphotosynthetic tissues. Analytical Biochemistry, 417(2), 220–227. https://doi.org/10.1016/j.ab.2011.05.044

  12. Clejan, S., Krulwich, T. A., Mondrus, K. R., & Seto-Young, D. (1986). Membrane lipid composition of obligately and facultatively alkalophilic strains of Bacillus spp. Journal of Bacteriology, 168(1), 334–340. https://doi. org/10.1128/jb.168.1.334-340.1986

  13. Cronan, J. E. (2003). Bacterial Membrane Lipids: Where Do We Stand? Annual Review of Microbiology, 57(1), 203–224. https://doi.org/10.1146/annurev.micro.57.030502.090851

  14. Daley, D. O., Rapp, M., Granseth, E., Melén, K., Drew, D., & von Heijne, G. (2005). Global topology analysis of the Escherichia coli inner membrane proteome. Science (New York, N.Y.), 308(5726), 1321–1323. https://doi. org/10.1126/science.1109730

  15. Delaunay, J. L., Breton, M., Trugnan, G., & Maurice, M. (2008). Differential solubilization of inner plasma membrane leaflet components by Lubrol WX and Triton X-100. Biochimica et Biophysica Acta - Biomembranes, 1778(1), 105–112. https://doi.org/10.1016/j.bbamem.2007.09.017

  16. Deol, S. S., Bond, P. J., Domene, C., & Sansom, M. S. P. (2004). Lipid-protein interactions of integral membrane proteins: A comparative simulation study. Biophysical Journal, 87(6), 3737–3749. https://doi.org/10.1529/ biophysj.104.048397

  17. Fishov, I., & Woldringh, C. L. (1999). Visualization of membrane domains in Escherichia coli. Molecular Microbiology, 32(6), 1166–1172. https://doi.org/10.1046/ j.1365-2958.1999.01425.x

  18. Frye, L. D., & Edidin, M. (1970). The Rapid Intermixing of Cell Surface Antigens After Formation of Mouse- Human Heterokaryons. Journal of Cell Science, 7(2), 319–335. Retrieved from http://www.ncbi.nlm.nih.gov/ pubmed/4098863

  19. Gilleland, H. E., & Lyle, R. D. (1979). Chemical alterations in cell envelopes of polymyxin-resistant Pseudomonas aeruginosa isolates. Journal of Bacteriology, 138(3), 839–845. Retrieved from http://www.ncbi.nlm.nih.gov/ pubmed/6271731

  20. Guzmán-Flores, J. E., Álvarez, A. F., Poggio, S., Gavilanes- Ruiz, M., & Georgellis, D. (2017). Isolation of detergentresistant membranes (DRMs) from Escherichia coli. Analytical Biochemistry, 518(1), 1–8. https://doi. org/10.1016/j.ab.2016.10.025

  21. Hinderhofer, M., Walker, C. A., Friemel, A., Stuermer, C. A., Möller, H. M., & Reuter, A. (2009). Evolution of prokaryotic SPFH proteins. BMC Evolutionary Biology, 9(10), 1-18. https://doi.org/10.1186/1471-2148-9-10

  22. Hutton, M. L., D’Costa, K., Rossiter, A. E., Wang, L., Turner, L., Steer, D. L., Masters, S. L., Croker, B. A., Kaparakis- Liaskos, M., & Ferrero, R. L. (2017). A Helicobacter pylori Homolog of Eukaryotic Flotillin Is Involved in Cholesterol Accumulation, Epithelial Cell Responses and Host Colonization. Frontiers in Cellular and Infection Microbiology, 7, 219. https://doi.org/10.3389/ fcimb.2017.00219

  23. Kamio, Y., & Nikaido, H. (1976). Outer membrane of Salmonella typhimurium: accessibility of phospholipid head groups to phospholipase C and cyanogen bromide activated dextran in the external medium. Biochemistry, 15(12), 2561–2570. https://doi.org/10.1021/bi00657a012

  24. Kawai, F., Shoda, M., Harashima, R., Sadaie, Y., Hara, H., & Matsumoto, K. (2004). Cardiolipin Domains in Bacillus subtilis Marburg Membranes. Journal of Bacteriology, 186(5), 1475–1483. https://doi.org/10.1128/ JB.186.5.1475-1483.2004

  25. Krogh, A., Larsson, B., von Heijne, G., & Sonnhammer, E. L. . (2001). Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. Journal of Molecular Biology, 305(3), 567– 580. https://doi.org/10.1006/JMBI.2000.4315

  26. LaRocca, T. J., Pathak, P., Chiantia, S., Toledo, A., Silvius, J. R., Benach, J. L., & London, E. (2013). Proving Lipid Rafts Exist: Membrane Domains in the Prokaryote Borrelia burgdorferi Have the Same Properties as Eukaryotic Lipid Rafts. PLoS Pathogens, 9(5), e1003353. https://doi.org/10.1371/journal.ppat.1003353

  27. Lee, A. G. (2003). Lipid-protein interactions in biological membranes: A structural perspective. Biochimica et Biophysica Acta – Biomembranes, 1612(1), 1-40. https:// doi.org/10.1016/S0005-2736(03)00056-7

  28. Lisanti, M. P., & Rodríguez-Boulan, E. (1990). Glycophospholipid membrane anchoring provides clues to the mechanism of protein sorting in polarized epithelial cells. Trends in Biochemical Sciences, 15(3), 113–118. https://doi.org/10.1016/0968-0004(90)90195-H

  29. López, D., & Koch, G. (2017). Exploring functional membrane microdomains in bacteria: an overview. Current Opinion in Microbiology, 36, 76-84. https://doi.org/10.1016/J. MIB.2017.02.001

  30. López, D., & Kolter, R. (2010). Functional microdomains in bacterial membranes. Genes and Development, 24(17), 1893–1902. https://doi.org/10.1101/gad.1945010

  31. Luirink, J., Yu, Z., Wagner, S., & de Gier, J.-W. (2012). Biogenesis of inner membrane proteins in Escherichia coli. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1817(6), 965– 976. https://doi.org/10.1016/J.BBABIO.2011.12.006

  32. Macdonald, J. L., & Pike, L. J. (2005). A simplified method for the preparation of detergent-free lipid rafts. Journal of Lipid Research, 46(5), 1061–1067. https://doi. org/10.1194/jlr.D400041-JLR200

  33. Magee, A. I., & Parmryd, I. (2003). Detergent-resistant membranes and the protein composition of lipid rafts. Genome Biology, 4:234. https://doi.org/10.1186/gb- 2003-4-11-234

  34. Maloney, E., Lun, S., Stankowska, D., Guo, H., Rajagoapalan, M., Bishai, W. R., & Madiraju, M. V. (2011). Alterations in phospholipid catabolism in Mycobacterium tuberculosis lysX mutant. Frontiers in Microbiology, 2(FEB), 1-19. https://doi.org/10.3389/fmicb.2011.00019

  35. Mazzone, A., Tietz, P., Jefferson, J., Pagano, R., & LaRusso, N. F. (2006). Isolation and characterization of lipid microdomains from apical and basolateral plasma membranes of rat hepatocytes. Hepatology, 43(2), 287– 296. https://doi.org/10.1002/hep.21039

  36. Mielich-Süss, B., Wagner, R. M., Mietrach, N., Hertlein, T., Marincola, G., Ohlsen, K., Geibel, S., & López, D. (2017). Flotillin scaffold activity contributes to type VII secretion system assembly in Staphylococcus aureus. PLoS Pathogens, 13(11), e1006728. https://doi.org/10.1371/ journal.ppat.1006728

  37. Mileykovskaya, E., & Dowhan, W. (2000). Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange. Journal of Bacteriology, 182(4), 1172–1175. https://doi.org/10.1128/JB.182.4.1172-1175.2000

  38. Mongrand, S., Morel, J., Laroche, J., Claverol, S., Carde, J. P., Hartmann, M. A., Bonneu, M., Simon-Plas, F., Lessire, R., & Bessoule, J. J. (2004). Lipid rafts in higher plant cells: Purification and characterization of triton X-100- insoluble microdomains from tobacco plasma membrane. Journal of Biological Chemistry, 279(35), 36277–36286. https://doi.org/10.1074/jbc.M403440200

  39. Nebl, T., Pestonjamasp, K. N., Leszyk, J. D., Crowley, J. L., Oh, S. W., & Luna, E. J. (2002). Proteomic analysis of a detergent-resistant membrane skeleton from neutrophil plasma membranes. The Journal of Biological Chemistry, 277(45), 43399–43409. https://doi.org/10.1074/jbc. M205386200

  40. Neumann-Giesen, C., Falkenbach, B., Beicht, P., Claasen, S., Lüers, G., Stuermer, C. A. O., Herzog, V., & Tikkanen, R. (2004). Membrane and raft association of reggie-1/ flotillin-2: role of myristoylation, palmitoylation and oligomerization and induction of filopodia by overexpression. The Biochemical Journal, 378(2), 509– 518. https://doi.org/10.1042/BJ20031100

  41. Otto, G. P., & Nichols, B. J. (2011). The roles of flotillin microdomains - endocytosis and beyond. Journal of Cell Science, 124(23), 3933–3940. https://doi.org/10.1242/ jcs.092015

  42. Papanastasiou, M., Orfanoudaki, G., Koukaki, M., Kountourakis, N., Sardis, M. F., Aivaliotis, M., Karamanou, S., & Economou, A. (2013). The Escherichia coli peripheral inner membrane proteome. Molecular & Cellular Proteomics : MCP, 12(3), 599–610. https://doi. org/10.1074/mcp.M112.024711

  43. Pike, L. J. (2006). Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. Journal of Lipid Research, 47(7), 1597–1598. https://doi. org/10.1194/jlr.E600002-JLR200

  44. Renner, L. D., & Weibel, D. B. (2011). Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. Proceedings of the National Academy of Sciences of the United States of America, 108(15), 6264–6269. https://doi.org/10.1073/ pnas.1015757108

  45. Rothman, J. E., & Kennedy, E. P. (1977). Symmetrical distribution of phospholipids in the membrane of Bacillus megaterium. Journal of Molecular Biology, 110(3), 603– 618. https://doi.org/10.1016/S0022-2836(77)80114-9

  46. Schneider, J., Mielich-Süss, B., Böhme, R., & López, D. (2015). In vivo characterization of the scaffold activity of flotillin on the membrane kinase KinC of Bacillus subtilis. Microbiology, 161(9), 1871–1887. https://doi. org/10.1099/mic.0.000137

  47. Schuck, S., Honsho, M., Ekroos, K., Shevchenko, A., & Simons, K. (2003). Resistance of cell membranes to different detergents. Proceedings of the National Academy of Sciences of the United States of America, 100(10), 5795–5800. https://doi.org/10.1073/pnas.0631579100

  48. Silhavy, T. J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology, 2(5), a000414. https://doi.org/10.1101/ cshperspect.a000414

  49. Simons, K., & Ikonen, E. (1997). Functional rafts in cell membranes. Nature, 387(6633), 569–572. https://doi. org/10.1038/42408

  50. Simons, K., & Van Meer, G. (1988). Lipid sorting in epithelial cells. Biochemistry, 27(17), 6197–6202. https://doi. org/10.1021/bi00417a001

  51. Singer, S. J. J., & Nicolson, G. L. L. (1972). The fluid mosaic model of the structure of cell membranes. Science, 175(4023), 720–731. https://doi.org/10.1126/ science.175.4023.720

  52. Siontorou, C., Nikoleli, G.-P., Nikolelis, D., & Karapetis, S. (2017). Artificial Lipid Membranes: Past, Present, and Future. Membranes, 7(3), 38. https://doi.org/10.3390/ membranes7030038

  53. Sohlenkamp, C., & Geiger, O. (2016). Bacterial membrane lipids: Diversity in structures and pathways. (F. Narberhaus, Ed.), FEMS Microbiology Reviews. Oxford University Press. https://doi.org/10.1093/femsre/fuv008

  54. Solís, G. P., Hoegg, M., Munderloh, C., Schrock, Y., Malaga- Trillo, E., Rivera-Milla, E., & Stuermer, C. A. O. (2007). Reggie/flotillin proteins are organized into stable tetramers in membrane microdomains. The Biochemical Journal, 403(2), 313–322. https://doi.org/10.1042/BJ20061686

  55. Somani, V. K., Aggarwal, S., Singh, D., Prasad, T., & Bhatnagar, R. (2016). Identification of Novel Raft Marker Protein, FlotP in Bacillus anthracis. Frontiers in Microbiology, 7, 169. https://doi.org/10.3389/fmicb.2016.00169

  56. Stoops, E. H., & Caplan, M. J. (2014). Trafficking to the Apical and Basolateral Membranes in Polarized Epithelial Cells. Journal of the American Society of Nephrology, 25(7), 1375–1386. https://doi.org/10.1681/ASN.2013080883

  57. Tavernarakis, N., Driscoll, M., & Kyrpides, N. C. (1999). The SPFH domain: implicated in regulating targeted protein turnover in stomatins and other membrane-associated proteins. Trends in Biochemical Sciences, 24(11), 425– 427. https://doi.org/10.1016/S0968-0004(99)01467-X

  58. Toledo, A., Pérez, A., Coleman, J. L., & Benach, J. L. (2015). The lipid raft proteome of Borrelia burgdorferi. Proteomics, 15(21), 3662–3675. https://doi.org/10.1002/ pmic.201500093

  59. van Meer, G., Voelker, D. R., & Feigenson, G. W. (2008). Membrane lipids: where they are and how they behave. Nature Reviews Molecular Cell Biology, 9(2), 112–124. https://doi.org/10.1038/nrm2330

  60. Williamson, R., Thompson, A. J., Abu, M., Hye, A., Usardi, A., Lynham, S., Anderton, B. H., & Hanger, D. P. (2010). Isolation of detergent resistant microdomains from cultured neurons: detergent dependent alterations in protein composition. BMC Neuroscience, 11, 120. https:// doi.org/10.1186/1471-2202-11-120.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2019;22

ARTíCULOS SIMILARES

CARGANDO ...