medigraphic.com
ENGLISH

Revista de Educación Bioquímica

  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2019, Número 2

<< Anterior Siguiente >>

Rev Educ Bioquimica 2019; 38 (2)


El papel de las GalNac-Transferasas en el desarrollo del cáncer de mama

García CLM, Hernández JJ, Fernández RB, Hernández CPA, Pérez CME, Gallegos VIB
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 28
Paginas: 48-56
Archivo PDF: 357.72 Kb.


PALABRAS CLAVE

Glicosilación, Glicosil transferasas, GalNAc transferasas, cáncer de mama.

RESUMEN

El cáncer de mama es la segunda causa de muerte de mujeres en el mundo, sin embargo, si es diagnosticado oportunamente puede ser curado. Recientemente se ha observado que cambios en la estructura de los oligosacáridos de membrana, se relacionan con los procesos de transformación y proliferación celular, los cuales pueden originar el cáncer de mama. La glicosilación incompleta de glicoproteínas, expone nuevos antígenos, particularmente el antígeno Thomsen-Friedenreich (TF), Para la síntesis de este antígeno las células emplean enzimas denominadas glicosiltransferasas, especialmente las GalNac transferasas que adicionan el monosacárido GalNac a un residuo de serina o treonina. En esta revisión nos enfocaremos en el papel de las GalNac transferasas, en el desarrollo del cáncer de mama.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Zhang H, Zhu F, Yang T, Ding L, Zhou M, Li J, Haslam SM, Dell A, Erlandsen H y Wu H (2014). The highly conserved domain of unknown function 1792 has a distinct glycosyltransferase fold. Nat. Commun. 5: 4339

  2. Varki A y Kornfeld S (2017). Essentials of Glycobiology, 3rd edition (Tercera ed.). Cold Spring Harbor (NY), E.U.: Cold Spring Harbor Laboratory Press.

  3. Bennett E, Mandel U, Clausen H, Gerken T, Fritz T y Tabak, L. (2012). Control of mucintype O-glycosylation: A classification of the polypeptide GalNAc-transferase gene family. Glycobiology. 22: 736–756.

  4. Lairson L, Henrissat B, Davies G, y Withers, S. (2008). Glycosyltransferases: Structures, Functions, and Mechanism. Annual Review of Biochemistry 77: 521-55.

  5. De Angelis E, Watkins A, Schäfer M, Brümmendorf T y Kenwrick S (2002). Diseaseassociated mutations in L1 CAM interfere with ligand interactions and cell-surface expression. Hum. Mol. Genet. 11: 1–12

  6. Mar kine-Goriaynoff, N (2004) . Glycosyltransferases encoded by viruses. J. Gen. Virol. 85: 2741–2754

  7. Yamamoto F, Clausen H, White T, Marken J. y Hakomori, S (1990). Molecular genetic basis of the histo-blood group ABO system. Nature 345: 229–233.

  8. Talbot P (2002) . Cel l Adhesion and Fertilization: Steps in Oocyte Transport, Sperm-ZonaPellucida Interactions, and Sperm-Egg Fusion. Biol. Reprod. 68: 1–9

  9. Hakomori S (2002).. Glycosylation defining cancer malignancy: new wine in an old bottle. Proc.Natl. Acad. Sci. U. S. A. 99: 10231–10233

  10. Becker DJ y Lowe JB (2003). Fucose: biosynthesis and biological function in mammals. Glycobiology 13: 41R–53R

  11. Rudd PM. (2001). Glycosylation and the Immune System. Science. 291: 2370–2376

  12. Cantarel B, Coutinho P, Rancurel C, Bernard T, Lombard V y Henrissat B (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37: 233-238.

  13. Campbell JA, Davies GJ, Bulone V y Henrissat B (1997). A classification of nucleotidediphospho- sugar glycosyltransferases based on amino acid sequence similarities. Biochem. J 326: 929-939.

  14. Coutinho PM, Deleury E, Davies GJ, y Henrissat B (2003). An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328: 307-17.

  15. Breton C, Fournel-Gigleux S, G y Palcic MM (2012). Recent structures, evolution and mechanisms of glycosyltransferases. Curr Opin Struct Biol 22: 540-549.

  16. Breton C, Snajdrova L, Jeanneau C, Koca J, e Imberty A (2006) Structures and mechanisms of glycosyltransferases. Glycobiology 16: p. 29R-37R.

  17. Henrissat B, Sulzenbacher G, y Bourne Y (2008).Glycosyltransferases, glycoside hydrolases: surprise, surprise! Curr Opin Struct Biol 18: 527-5233.

  18. Lizak C, Gerber S, Numao S, Aebi M y Locher KP (2011). X-ray structure of a bacterial oligosaccharyltransferase. Nature. 474: 350- 355.

  19. Qasba PK, Ramakrishnan B, y Boeggeman E (2005) Substrate-induced conformational changes in glycosyltransferases. Trends Biochem Sci 30: 53-62.

  20. Charnock SJ y Davies GJ (1999) Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms. Biochemistry 38: 6380–6385.

  21. Liu J y Mushegian A (2003). Three monophyletic superfamilies account for the majority of the known glycosyltransferases. Protein Sci. 12: 1418–1431.

  22. Wu C, Guo X, Wang W, Wang Y, Shan Y, Zhang B y Zhu, M. (2010). RNes-eAarcch eartticylelgalactosaminyltransferase-14 as a potential biomarker for breast cancer by immunohistochemistry. BMC 10: 1-8.

  23. Freire T, Berois N, Sóñora C, Varangot M, Barrios E, Osinaga E (2006) UDP-Nacetyl- D -galactosamine: polypeptide N-acetylgalactosaminyl t ransferase 6 (ppGalNAc-T6) mRNA as a potential new marker for detection of bone marrowdisseminated breast cancer cells. International Journal of Cancer 119:1383-1388.

  24. Hang HC, Bertozzi CR (2005) The chemistry and biology of mucin-type O-linked glycosylation. Architecture 13:5021-5034.

  25. Pratt MR, Hang HC, Hagen KGT, Rarick J, Gerken TA, Tabak LA, Bertozzi CR (2004) Deconvoluting the Functions of Polypeptide N-alpha-Acetylgalactosaminyltransferase Family Members by Glycopeptide Substrate Profiling. Chemistry & Biology 11:1009-1016

  26. Qiu H, Xu X, Liu M, Wang Z, Yuan Y, Liu C, Xu, L y Wu, S. (2017). RNA interferencemediated silencing of ppGalNAc-T1 and ppGalNAc-T2 inhibits invasion and increases chemosensitivity potentially by reducing terminal α2,3 sialylation and MMP14 expression in triple-negative breast cancer cells. Molecular Medicine Reports 15: 3724-3734. https://doi. org/10.3892/mmr.2017.6449

  27. Yang R, Zhang H, Ma Y, Gong S, Niu J, Ma J, Zhong A (2015) The role of ppGalNAc-T family in breast cancer development and progression. Indian Journal of Cancer 52: 144-147.

  28. Zhang J, Zhang Z, Wang Q, Xing XJ, Zhao Y. (2016). Overexpression of microRNA-365 inhibits breast cancer cell growth and chemoresistance through GALNT4. Eur Rev Med Pharmacol Sci. 20:4710-4718.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Educ Bioquimica. 2019;38

ARTíCULOS SIMILARES

CARGANDO ...