medigraphic.com
ENGLISH

Archivos de Neurociencias

Instituto Nacional de Neurología y Neurocirugía
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2020, Número 3

<< Anterior Siguiente >>

Arch Neurocien 2020; 25 (3)


La inmunidad en enfermedades autoinmunes

Torres-Velasco ME, Gómez-Hollsten SM, Montes-Moratilla EU, Adalid-Peralta LV
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 45
Paginas: 59-69
Archivo PDF: 401.54 Kb.


PALABRAS CLAVE

autoinmune, inmunoregulación, Lupus, Miastenia, Parkinson, reumatoide.

RESUMEN

En este artículo se revisaron cuatro de las enfermedades autoinmunes más prevalentes en México. Nos enfocamos especialmente en la actividad del sistema inmune (linfocitos T y B) para entender cómo una alteración da lugar a una cascada de reacciones auto-lesivas para el individuo. Asimismo, damos una gran relevancia a la Enfermedad de Parkinson donde recientemente se ha encontrado un componente autoinmune.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Gilhus NE. Myasthenia gravis. N Engl J Med. 2016; 375:2570-81. DOI: 10.1056/NEJMra1602678

  2. Lee JI, Jander S. Myasthenia gravis: recent advances in immunopathology and therapy. Expert Rev Neurother. 2017; 17(3): 287–99. DOI: 10.1080/14737175.2017.1241144

  3. Phillips WD, Vincent A. Pathogenesis of myasthenia gravis: update on disease types, models, and mechanisms. F1000Res. 2016; F1000 Faculty Rev-1513 DOI: 10.12688/f1000research.8206.1

  4. Frontera WR, Ochala J. Skeletal Muscle: A Brief Review of Structure and Function. Calcif Tissue Int. 2015; 96(3):183- 95. DOI: 10.1007/s00223-014-9915-y.

  5. Arancibia D, Til PG, Carnevale SC, Tomas BM, Mas MS. Miastenia gravis: Un diagnóstico diferencial importante a la hora de evaluar a un paciente con sintomatología ORL. Rev Otorrinolaringol Cir. Cabeza Cuello. 2014; 74(1):57– 60. http://dx.doi.org/10.4067/S0718-48162014000100010

  6. Gradolatto A, Nazzal D, Foti M, Bismuth J, Truffault F, Panse R Le, et al. Defects of immunoregulatory mechanisms in myasthenia gravis: Role of IL-17. Ann N Y Acad Sci. 2012; 1274:40-7. DOI: 10.1111/j.1749-6632.2012.06791.x.

  7. Poëa-Guyon S, Christadoss P, Le Panse R, Guyon T, De Baets M, Wakkach A, et al. Effects of cytokines on acetylcholine receptor expression: implications for Myasthenia Gravis. J Immunol. 2005; 174(10):5941–9. DOI: https://doi.org/10.4049/jimmunol.174.10.5941

  8. Uzawa A, Kanai T, Kawaguchi N, Oda F, Himuro K, Kuwabara S. Changes in inflammatory cytokine networks in myasthenia gravis. Sci Rep. 2016; 6:25886. DOI: 10.1038/srep25886

  9. Karim MR, Zhang H-Y, Yuan J, Sun Q, Wang Y-F. Regulatory B Cells in Seropositive Myasthenia Gravis versus Healthy Controls. Front Neurol. 2017; 8:43. DOI: 10.3389/fneur.2017.00043

  10. Vander Heiden JA, Stathopoulos P, Zhou JQ, Chen L, Gilbert TJ, Bolen CR, et al. Dysregulation of B Cell Repertoire Formation in Myasthenia Gravis Patients Revealed through Deep Sequencing. J Immunol. 2017; 198(4):1460–73. DOI: 10.4049/jimmunol.1601415

  11. Berrih-Aknin S, Le Panse R. Myasthenia gravis: A comprehensive review of immune dysregulation and etiological mechanisms. J Autoimmu. 2014; (52):90–100. DOI: 10.1016/j.jaut.2013.12.011

  12. Cavalcante P, Bernasconi P, Mantegazza R. Autoimmune mechanisms in myasthenia gravis. Curr Opin Neurol. 2012; 25(5):621–9. DOI: 10.1097/WCO.0b013e328357a829

  13. Gradolatto A, Nazzal D, Truffault F, Bismuth J, Fadel E, Foti M, et al. Both Treg cells and Tconv cells are defective in the Myasthenia gravis thymus: Roles of IL-17 and TNF-a. J Autoimmun. 2014; 52:53–63. DOI:10.1016/j. jaut.2013.12.015

  14. Raibagkar P, Ferry JA, Stone JH. Is MuSK myasthenia gravis linked to IgG4-related disease?. J Neuroimmunol. 2017; 305:82–3. DOI: 10.1016/j.jneuroim.2017.02.004

  15. La Paglia GMC, Leone MC, Lepri G, Vagelli R, Valentini E, Alunno A, et al. One year in review 2017: Systemic lupus erythematosus. Clini Exp Rheumatol S.A.S. 2017; (35):551–61.

  16. Giang S, La Cava A. Regulatory T Cells in SLE: Biology and Use in Treatment. Curr Rheumatol Rep. 2016; 18(11):67. DOI: 10.1007/s11926-016-0616-6.

  17. Zharkova O, Celhar T, Cravens PD, Satterthwaite AB, Fairhurst AM, Davis LS. Pathways leading to an immunological disease: systemic lupus erythematosus. Rheumatology (Oxford). 2017; 56(1):i55-i66. DOI: 10.1093/rheumatology/ kew427

  18. Pathak S, Mohan C. Cellular and molecular pathogenesis of systemic lupus erythematosus: Lessons from animal models. Arthritis Res Ther. 2011; 13(5):241. DOI: 10.1186/ar3465

  19. Lauková L, Konecná B. NETosis - Dr. Jekyll and Mr. Hyde in inflammation. J App Biomed. 2018; 16: 1–9. DOI: 10.1016/j.jab.2017.10.002

  20. D’Cruz DP, Khamashta MA, Hughes GR. Systemic lupus erythematosus. Lancet. 2007; 17(369): 587–96. DOI:https:// doi.org/10.1016/S0140-6736(07)60279-7

  21. Rahman A, Isenberg DA. Systemic lupus erythematosus. N Engl J Med. 2008; 28; 358(9):929-39. DOI: 10.1056/ NEJMra071297.

  22. D’Cruz DP, Khamashta MA, Hughes GR V. Systemic lupus erythematosus. Lancet (London, England). 2007; 369(9561):587–96. DOI: 10.1136/bmj.332.7546.890

  23. Xibillé-Friedmann D, Pérez-Rodríguez M, Carrillo-Vázquez S, Álvarez-Hernández E, Aceves FJ, Ocampo-Torres MC, et al. Clinical practice guidelines for the treatment of systemic lupus erythematosus by the Mexican College of Rheumatology. Reumatol Clin. 2019; 15(1):3–20. DOI:https://doi.org/10.1016/j.reuma.2018.03.011

  24. Broder A, Khattri S, Patel R, Putterman C. Undertreatment of disease activity in systemic lupus erythematosus patients with endstage renal failure is associated with increased all-cause mortality. J Rheumatol. 2011; 38(11):2382–9. DOI: 10.3899/jrheum.110571

  25. Liu Y, Anders HJ. Lupus Nephritis: From Pathogenesis to Targets for Biologic Treatment. Nephron Clin Pract. 2014; 128(3-4):224-31. https://www.karger.com/Article/FullText/368581

  26. Firestein GS, McInnes IB. Immunopathogenesis of Rheumatoid Arthritis. Immunity. 2017;46(2):183–96. DOI:http:// dx.doi.org/10.1016/j.immuni.2017.02.006

  27. Neira F., Ortega J. L.. Tratamiento del dolor en la artritis reumatoide fundamentado en medicina basada en la evidencia. Rev. Soc. Esp. Dolor. 2006; 13(8):561-566. http://scielo.isciii.es/scielo. php?script=sci_arttext&pid=S1134-80462006000800008&lng=es.

  28. Mateen, Somaiya, et al. Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clinica Chimica Acta. 2016;455:161-171. DOI:https://doi.org/10.1016/j.cca.2016.02.010

  29. Angelotti F, Parma A, Cafaro G, Capecchi R, Alunno A, Puxeddu I. One year in review 2017: pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol. 2017; 35(3):368–78.

  30. Hernández AS. Células colaboradoras (TH1, TH2, TH17) y reguladoras (Treg, TH3, NKT) en la artritis reumatoide. Reumatol Clin Supl.2009;5:1–5. DOI:https://doi.org/10.1016/j.reuma.2008.11.012

  31. Ganong. Fisiología médica, 25e. AccessMedicina: McGraw-Hill Medical; 2019. https://accessmedicina.mhmedical. com/book.aspx?bookID=1800

  32. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms Underlying Inflammation in Neurodegeneration. 2010; 140: 918–34. DOI:https://doi.org/10.1016/j.cell.2010.02.016

  33. Collins LM, Toulouse A, Connor TJ, Nolan YM. Contributions of central and systemic inflammation to the pathophysiology of Parkinson’s disease. Neuropharmacology. 2012; 62(7):2154– 68. DOI:https://doi.org/10.1016/j. neuropharm.2012.01.028

  34. Stefanis L. α-Synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012; 2(2). DOI: 10.1101/ cshperspect.a009399

  35. Hirsch EC, Vyas S, Hunot S. Neuroinflammation in Parkinson’s disease. Park Relat Disord. 2012;18: S210-S212. DOI:https://doi.org/10.1016/S1353-8020(11)70065-7

  36. Bas J, Calopa M, Mestre M, Molleví DG, Cutillas B, Ambrosio S, et al. Lymphocyte populations in Parkinson’s disease and in rat models of parkinsonism. J Neuroimmunol. 2001; 113(1):146–52. DOI:https://doi.org/10.1016/ S0165-5728(00)00422-7

  37. Sommer A, Maxreiter F, Krach F, Fadler T, Grosch J, Maroni M, et al. Th17 Lymphocytes Induce Neuronal Cell Death in a Human iPSC-Based Model of Parkinson’s Disease. Cell Stem Cell. 2018;23(1):123-131.e6. DOI:https:// doi.org/10.1016/j.stem.2018.06.015

  38. Baba Y, Kuroiwa A, Uitti RJ, Wszolek ZK, Yamada T. Alterations of T-lymphocyte populations in Parkinson disease. Park Relat Disord. 2005; 11(8): 493–8. DOI:https://doi.org/10.1016/j.parkreldis.2005.07.005

  39. Joshi N, Singh S. Updates on immunity and inflammation in Parkinson disease pathology. Vol. 96, Journal of Neuroscience Research. 2018; p. 379–90. DOI:https://doi.org/10.1002/jnr.24185

  40. Álvarez-Luquín D, Arce-Sillas A, Leyva-Hernández J, Sevilla-Reyes E, Boll M, Montes-Moratilla E, et al. Regulatory impairment in untreated Parkinson’s disease is not restricted to Tregs other regulatory populations are also involve. J Neuroinflammation. 2019; 16 (1): 212. DOI:https://doi.org/10.1186/s12974-019-1606-1

  41. Tufekci KU, Meuwissen R, Genc S, Genc K. Inflammation in parkinson’s disease. In: Rossen Donev, editor. Advances in Protein Chemistry and Structural Biology. Oxford: Academic Press Inc; 2012. 69–132.

  42. Saunders JAH, Estes KA, Kosloski LM, Allen HE, Dempsey KM, Torres-Russotto DR, et al. CD4+ regulatory and effector/memory T cell subsets profile motor dysfunction in Parkinson’s disease. J Neuroimmune Pharmacol. 2012; 7(4): 927–38. DOI:https://doi.org/10.1007/s11481-012-9402-z

  43. Bertsias GK, Ioannidis JPA, Aringer M, Bollen E, Bombardieri S, Bruce IN, et al. EULAR recommendations for the management of systemic lupus erythematosus. Report of a Task Force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics. Ann Rheum Dis. 2010; 69(12): 2074–82. DOI: http://dx.doi. org/10.1136/ard.2007.070367

  44. Stevens CH, Rowe D, Morel-Kopp MC, Orr C, Russell T, Ranola M, et al. Reduced T helper and B lymphocytes in Parkinson’s disease. J Neuroimmunol. 2012; 252(1–2): 95–9. DOI:https://doi.org/10.1016/j.jneuroim.2012.07.015

  45. Alonso Cánovas A, Luquin Piudo R, García Ruiz-Espiga P, Burguera JA, Campos Arillo V, Castro A, et al. Agonistas dopaminérgicos en la enfermedad de Parkinson. Neurologia; 2014: 29: 230–241. DOI: https://doi.org/10.1016/j. nrl.2011.04.012




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Arch Neurocien. 2020;25

ARTíCULOS SIMILARES

CARGANDO ...