medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2020, Número 1

<< Anterior Siguiente >>

TIP Rev Esp Cienc Quim Biol 2020; 23 (1)


Funcionalización de los recubrimientos a base de quitosano para la conservación postcosecha de frutas y hortalizas

Anaya-Esparza LM, Pérez-Larios A, Ruvalcaba-Gómez JM, Sánchez-Burgos JA, Romero-Toledo R, Montalvo-González E
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 69
Paginas: 1-14
Archivo PDF: 498.32 Kb.


PALABRAS CLAVE

recubrimientos comestibles, quitosano, funcionalización, protección, frutas y hortalizas, vida de anaquel.

RESUMEN

En años recientes, se ha buscado el desarrollo y aplicación de recubrimientos comestibles que sean seguros, biodegradables y con adecuadas propiedades tecnológicas y funcionales que ayuden a extender la vida de anaquel de frutas y hortalizas. El quitosano es uno de los biomateriales con mayor potencial para la elaboración de recubrimientos comestibles. Sin embargo, su principal desventaja es la alta permeabilidad al vapor de agua que exhibe, por lo que, una alternativa para mitigar esta limitante, es su funcionalización mediante la incorporación de compuestos orgánicos (aceites esenciales, extractos naturales, ácido ascórbico, hidrolizados de proteína, polisacáridos) e inorgánicos (SiO2, TiO2, ZnO, Ag y montmorillonita), además, de la adición de microorganismos (levaduras) a la matriz polimérica. El quitosano funcionalizado, aplicado a productos hortofrutícolas, ha mostrado mejores resultados (mayor vida de anaquel y cambios mínimos en parámetros de calidad) que los obtenidos al emplear quitosano sin funcionalizar. El objetivo de esta revisión es describir y discutir los beneficios y limitaciones de la funcionalización del quitosano y su aplicación en productos hortofrutícolas.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Arce-Ortiz, K. L., Ortega-Villalba, K. J., Ochoa-Martínez, C. I. & Vélez-Pasos, C. (2016). Evaluation of the water vapor permeability for whey protein/chitosan films and its effect on respiration of coated banana. INNOTEC, 11(1), 59–64.

  2. Bautista-Baños, S., Ventura-Aguilar, R. I., Correa-Pacheco, Z. & Corona-Rangel, M. L. (2017). Chitosan: a versatile antimicrobial polysaccharide for fruit and vegetables in postharvest–a review. Revista Chapingo Serie Horticultura, 23(2), 103–121. DOI: http://dx.doi.org/10.5154/r. rchsh.2016.11.030

  3. Berumen-Varela, G., Coronado Partida, L. D., Ochoa Jiménez, V. A., Chacón López, M. A. & Gutiérrez Martínez, P. (2015). Effect of chitosan on the induction of disease resistance against Colletotrichum sp. in mango (Mangifera indica L.) cv. Tommy Atkins. Investigación y Ciencia de la Universidad Autónoma de Aguascalientes, 66(1), 16–21.

  4. Bilalis, P., Katsigiannopoulos, D., Avgeropoulos, A. & Sakellariou, G. (2014). Non-covalent functionalization of carbon nanotubes with polymers. RCS Advances, 4, 2911–2934. DOI: 10.1039/C3RA44906H

  5. Bosquez-Molina, E., Ronquillo-de Jesús, E., Bautista-Baños, S., Verde-Calvo, J. R. & Morales-López, J. (2010). Evaluation of the inhibitory effect of essential oils against Colletotrichum gloesoporioides and Rhizopus stolonifer in stored papaya fruit and their possible application in coatings. Postharvest Biology and Technology, 57, 132–137. DOI: https://doi.org/10.1016/j.postharvbio.2010.03.008

  6. Campos, R. P., Kwiatkowski, A. & Clemente, E. (2011). Post-harvest conservation of organic strawberries coated with cassava starch and chitosan. Revista Ceres, 58(5), 554–560. DOI: http://dx.doi.org/10.1590/S0034- 737X2011000500004

  7. Castillo-Escandón, V., Fernández-Michel, S. G., Cueto-Wong, M. C. & Montfort, G. R. C. (2019). Criterios y estrategias tecnológicas para la incorporación y supervivencia de probióticos en frutas, cereales y sus derivados. TIP Revista Especializada en Ciencias Químico-Biológicas, 22(1), 1–17. DOI: https://doi.org/10.22201/fesz.23958723e.2019.0.173

  8. Chantrasri, P., Sardsud, V., Sangchote, S. & Sardsud, U. (2007). Combining yeasts and chitosan treatment to reduce anthracnose fruit rot in mangoes. Asian Journal of Biology Education, 3(1), 40–46.

  9. Chen, Y. C., Wang, C. H., Lai, L. S. & Lin, K. W. (2003). Rheological properties of chitosan and its interaction with porcine myofibrillar proteins as influenced by chitosan´s degree of deacetylation and concentration. Journal of Food Science: Food Chemistry and Toxicology, 68(3), 826–831. DOI: https://doi.org/10.1111/j.1365-2621.2003.tb08250.x

  10. Chiabrando, V. & Giacalone, G. (2016). Effect of chitosan and sodium alginate edible coatings on the postharvest quality of fresh-cut nectarines during storage. Fruits, 71(2), 79–85. DOI: 10.1051/fruits/2015049

  11. de Assis-Alves, T., Fontes-Pinheiro, P., Praca-Fontes, M. M., Andrade-Vieira, L. F., Barelo-Correa, K., de Assis-Alves, T., Aparecida da Cruz, F., Lacerda-Junior, V., Ferreira, A. & Bastos-Soares, T. C. (2018). Toxicity of thymol, carvacrol and their respective phenoxyacetic acids in Lactuca sativa and Sorghum bicolor. Industrial Crops and Products, 114, 59–67. DOI: https://doi.org/10.1016/j. indcrop.2018.01.071

  12. Di Pierro, P., Chico, B., Villalonga, R., Mariniello, L., Damiao, A. E., Masi, P. & Pota, R. (2006). Chitosan-whey protein edible films produced in the absence or presence of transglutaminase: Analyisis of their mechanical and barrier properties. Biomacromolecules, 7(1), 744–749. DOI: 10.1021/bm050661u

  13. Fortunati, E., Giovanale, G., Luzi, F., Mazzaglia, A., Kenny, J. M., Torre, L. & Balestra, G. M. (2017). Effective postharvest preservation of kiwifruit and romaine lettuce with a chitosan hydrochloride coating. Coatings, 7, 2–15. DOI: https://doi. org/10.3390/coatings7110196

  14. Gol, N. B., Patel, P. R. & Ramana-Rao, T. V. (2013). Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biology and Technology, 85(1), 185–195. DOI: https://doi.org/10.1016/j. postharvbio.2013.06.008

  15. Gutiérrez-Martínez, P., Bautista-Baños, S., Berúmen-Varela, G., Ramos-Guerrero, A. & Hernández-Ibáñez, A. M. (2017). In vitro response of Colletotrichum to chitosan. in vitro response of Colletotrichum to chitosan. Effect on incidence and quality on tropical fruit. Enzymatic expression in mango. Acta Agronomica, 66(2), 282–289. DOI: http:// dx.doi.org/10.15446/acag.v66n2.53770

  16. Hajji, S., Younes, I., Affes, S., Boufi, S. & Nasri, M. (2018). Optimization of the formulation of chitosan edible coatings supplemented with carotenoproteins and their use for extending strawberries postharvest life. Food Hydrocolloids, 83(1), 375–392. DOI: https://doi. org/10.1016/j.foodhyd.2018.05.013

  17. Jiao, W., Shu, C., Li, X., Cao, J., Fan, X. & Jiang, W. (2019). Preparation of a chitosan-chlorogenic acid conjugate and its application as edible coating in postharvest preservation of peach fruit. Postharvest Biology and Technology, 154(1), 129–136. DOI: https://doi.org/10.1016/j. postharvbio.2019.05.003

  18. Kaewklin, P., Siripatrawan, U., Suwanagul, A. & Lee, Y.S. (2018). Active packaging from chitosan-titanium dioxide nanocomposite film for prolonging storage life of tomato fruit. International Journal of Biological Macromolecules, 112(1), 523–529. DOI: https://doi.org/10.1016/j. ijbiomac.2018.01.124

  19. Kim, K.W. & Thomas, R. L. (2007). Antioxidative activity of chitosan with varying molecular weights. Food Chemistry, 101, 308–313. DOI: 10.1016/j.foodchem.2006.01.038

  20. Layek, R. K. & Nandi, A. K. (2013). A review on synthesis and properties of polymer functionalized graphene. Polymer, 54, 5087–5103. DOI: https://doi.org/10.1016/j. polymer.2013.06.027

  21. Li, N. Y., Ye, Q. Q., Hou, W. F. & Zhang, G. Q. (2018). Development of antibacterial ε-polylysine/chitosan hybrid films and the effect on citrus. International Journal of Biological Macromolecules, 118, 2051–2056. DOI: 10.1016/j.ijbiomac.2018.07.074

  22. Liu, K., Yuan, C., Chen, Y., Li, H. & Liu, J. (2014). Combined effects of ascorbic acid and chitosan on the quality maintenance and shelf life of plums. Scientia Horticulturae, 176, 45–53. DOI: https://doi.org/10.1016/j. scienta.2014.06.027

  23. López, A., Rivas, J., Loaiza, M. & Sabino, M. (2010). Degradación de películas plastificadas de quitosano obtenidas a partir de conchas de camarón. Revista de la Facultad de Ingeniería UCV, 25, 133–143.

  24. López-Mata, M. A., Ruiz-Cruz, S., Navarro-Preciado, C., Ornelas-Paz, J. J., Estrada-Alvarado, M. I. & Gassos- Ortega, L. E. (2012). Effect of chitosan edible coatings in the microbial reduction and conservation of the quality of strawberries. Revista de Ciencias Biológicas y de la Salud, 14(1), 33–43.

  25. Maccora, D., Dini, V., Battocchio, C., Fratoddi, I., Cartoni, A., Rotili, D., Castagnola, M., Faccini, R., Bruno, I., Scotognella, T., Giordano, A. & Venditti, I. (2019). Gold nanoparticles and nanorods in nuclear medicine: A mini review. Applied Sciences, 9, 3232. DOI: 10.3390/app9163232

  26. Santana, J. T., De Dios-Aguilar, M. A., Colín-Chávez, C., Mariscal-Amaro, L. A., Nuñez-Colín, C. A., Veloz- García, R., Gizmán-Maldonado, S. H., Peña-Caballero, V., Grijalva-Verdugo, C. P. & Rodríguez-Núñez, J. R. (2019). Coating based on chitosan and aqueous extract of Moringa oleifera leaf obtained by UMAE and its effect on the physicochemical properties of strawberry (Fragaria x ananassa). Revista de Ciencias Biológicas y de la Salud, 21(2), 155–163.

  27. Medeiros, B. G. S., Pinheiro, A. C., Carneiro-da-Cunha, M. G. & Vicente, A. A. (2012). Development and characterization of a nanomultilayer coating of pectin and chitosan–Evaluation of its gas barrier properties and application on ‘Tommy Atkins’ mangoes. Journal of Food Engineering, 110(3), 457–464. DOI: https://doi.org/10.1016/j.jfoodeng.2011.12.021

  28. Mohammadi, A., Hashemi, M. & Hosseini, S. M. (2015). Chitosan nanoparticles loaded with Cinnamomum zeylanicum essential oil enhance the shelf life of cucumber during cold storage. Postharvest Biology and Technology, 110(1), 203–213. DOI: https://doi.org/10.1016/j. postharvbio.2015.08.019

  29. Mohandas, A., Deepthi, S., Biswas, R. & Jayakumar, R. (2017). Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings. Bioactive Materials, 3, 267– 277. DOI: https://doi.org/10.1016/j.bioactmat.2017.11.003

  30. Mujtaba, M., Mosri, R. E., Kerch, G., Elsabee, M. Z., Kaya, M., Labidi, J. & Khawar, K. M. (2019). Current advancements in chitosan-based film production for food technology: A review. International Journal of Biological Macromolecules, 121(1), 889–904. DOI: https://doi. org/10.1016/j.ijbiomac.2018.10.109

  31. Nurul-Hanani, M. Z., Halimahton-Zahrah, M. S. & Zaibunnisa, A. H. (2012). Effect of chitosan-palm stearin edible coating on the postharvest life of star fruits (Averrhoa carambola L.) stored at room temperature. International Food Research Journal, 19(4), 1433–1438.

  32. Nurul-Hanani, M. Z., Halimahton-Zahrah, M. S. & Zaibunnisa, A. H. (2016). Effect of edible lipid-chitosan film forming dispersion on postharvest life of guava stored at chilled temperature. Malasyan Journal of Analytical Sciences, 20(3), 618–625. DOI: http://dx.doi.org/10.17576/mjas- 2016-2003-22

  33. Ortiz-Duarte, G., Pérez-Cabrera, L. E., Artés-Hernández, F., & Martínez-Hernández, G. B. (2019). Ag-chitosan nanocomposites in edible coatings affect the quality of fresh-cut melon. Postharvest Biology and Technology, 147(1), 174–184. DOI: https://doi.org/10.1016/j. postharvbio.2018.09.021

  34. Pagliarulo, C., Sansone, F., Moccia, S., Russo, G. L., Aquino, R. P., Salvatore, P., Di Stasio, M. & Volpe, M. G. (2016). Preservation of strawberries with an antifungal edible coating using peony extracts in chitosan. Food and Bioprocess Technology, 9(11), 1951–1960. DOI: https:// doi.org/10.1007/s11947-016-1779-x

  35. Perdones, A., Sánchez-González, L. & Vargas, M. (2012). Effect of chitosan–lemon essential oil coatings on storagekeeping quality of strawberry. Postharvest Biology and Technology, 70(1), 32–41. DOI: https://doi.org/10.1016/j. postharvbio.2012.04.002

  36. Porat, R., Lichter, A., Terry, L. A., Harker, R. & Buzby, J. (2018). Postharvest losses of fruit and vegetables during retail and it consumers’ homes: Quantifications, causes, and means of prevention. Postharvest Biology and Technology, 139, 135–149. DOI: https://doi.org/10.1016/j. postharvbio.2017.11.019

  37. Ramos-García, M., Bosquez-Molina, E., Hernández-Romano, J., Zavala-Padilla, G., Térres-Rojas, E., Alia-Tejacal, I., Barrera-Necha, L., Hernández-López, M. & Bautista- Baños, S. (2012). Use of chitosan-based edible coatings in combination with other natural compounds, to control Rhizopus stolonifer and Escherichia coli DH5α in fresh tomatoes. Crop Protection, 38(1), 1-6. DOI: https://doi. org/10.1016/j.cropro.2012.02.016

  38. Ramos-Guerrero, A., González-Estrada, R., Hanako-Rosas, G., Bautista-Baños, S., Acevedo-Hernández, G., Tiznado-Hernández, M. E. & Gutiérrez-Martínez, P. (2018). Use of inductors in the control of Colletotrichum gloeosporioides and Rhizopus stolonifer isolated from soursop fruits: in vitro tests. Food Science and Biotechnology, 27(3), 755–763. DOI: https://doi. org/10.1007/s10068-018-0305-5

  39. Rasouli, M., Saba, M. K. & Ramezanian, A. (2019). Inhibitory effect of salicylic acid and Aloe vera gel edible coating on microbial load and chilling injury of orange fruit. Scientia Horticulturae, 247, 27–34. DOI: https://doi.org/10.1016/j. scienta.2018.12.004

  40. Rico, F., Gutiérrez, C. & Díaz-Moreno, C. (2012). Effect of edible coating of chitosan and essential oils on microbiological quality of minimally processed mango (Mangifera indica L.). Vitae, 19 (1), S117–S119.

  41. Rinaudo, M. (2008). Behaviour of amphiphilic polysaccharides in aqueous medium. TIP Revista Especializada en Ciencias Químico-Biológicas, 11(1), 35–40.

  42. Rinaudo, M. (2014). Biomaterials based on a natural polysaccharide: alginate. TIP Revista Especializada en Ciencias Químico-Biológicas, 17(1), 92–96. DOI: https:// doi.org/10.1016/S1405-888X(14)70322-5

  43. Robledo, S. N., Pierini, G. D., Díaz-Nieto, C. H., Fernández, H., & Zon, M. A. (2019). Development of an electrochemical method to determine phenolic monoterpenes in essential oils. Talanta, 196, 362–369. DOI: https://doi.org/10.1016/j. talanta.2018.12.069

  44. Rodríguez-Guzmán, C. A., González-Estrada, R. R., Bautista- Baños, S. & Gutiérrez-Martínez, P. (2019). Efecto del quitosano en el control de Alternaria sp. en plantas de jitomate en invernadero. TIP Revista Especializada en Ciencias Químico-Biológicas, 22, 1–7. DOI: 10.22201/ fesz.23958723e

  45. Rojas-Grau, M. A., Soliva-Fortuny, R. & Martín-Belloso, O. (2009). Edible coatings to incorporate active ingredients to fresh-cut fruits: a review. Trends in Food Science & Technology, 20(10), 438–447. DOI: https://doi. org/10.1016/j.tifs.2009.05.002

  46. Romanazzi, G., Sanzani, S. M., Bi, Y., Tian, S., Gutiérrez- Martínez, P. & Alkan, N. (2016). Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biology and Technology, 122, 82–94.

  47. Shao, X., Cao, B., Xu, F., Xie, S., Yu, D. & Wang, H. (2015). Effect of postharvest application of chitosan combined with clove oil against citrus green mold. Postharvest Biology and Technology, 99(1), 34–43. DOI: https://doi.org/10.1016/j. postharvbio.2014.07.014

  48. Shi, S., Wang, W., Liu, L., Wu, S., Wei, Y. & Li, W. (2013). Effect of chitosan/nano-silica coating on the physicochemical characteristics of longan fruit under ambient temperature. Journal of Food Engineering, 118(1), 125–131. DOI: https:// doi.org/10.1016/j.jfoodeng.2013.03.029

  49. Solano-Doblado, L. G., Alamilla-Beltrán, L. & Jiménez- Martínez, C. (2018). Películas y recubrimientos comestibles funcionalizados. TIP Revista Especializada en Ciencias Químico-Biológicas, 21(2), 30–42. DOI: https://doi. org/10.22201/fesz.23958723e.2018.0.153

  50. Sun, D., Liang, G., Xie, J., Lei, X. & Mo, Y. (2010). Improved preservation effects of litchi fruit by combining chitosan coating with ascorbic acid treatment during postharvest storage. African Journal of Biotechnology, 9 (22), 3272–3279.

  51. Sun, X., Narciso, J., Wang, Z., Ference, C., Bai, J. & Zhou, K. (2014). Effects of chitosan-essential oil coatings on safety and quality of fresh blueberries. Journal of food science, 79(5), 955–960. DOI: 10.1111/1750-3841.12447

  52. Torres-Aguirre, G. A., Muñoz-Bernal, O. A., Álvarez- Parrilla, E., Nuñez-Gastelúm, J. A., Wall-Medrano, A., Sáyago-Ayerdi, S. G. & de la Rosa, L. A. (2018). Optimización de la extracción e identificación de compuestos polifenólicos en anís (Pimpinella anisum), clavo (Syzygium aromaticum) y cilantro (Coriandrum sativum) mediante HPLC acoplado a espectrometría de masas. TIP Revista Especializada en Ciencias Químico- Biológicas, 21(2), 103–115. DOI: https://doi.org/10.22201/ fesz.23958723e.2018.2.137

  53. USDA. (2016). United States Department of Agriculture. The commercial storage of fruits, vegetables, and florist and nursery stocks. En K. C. Gross, C. Y. Wang, & M. Saltveit (Eds.), Agriculture Handbook (pp. 11–166). California, USDA. https://www.ars.usda.gov/ARSUserFiles/oc/np/ CommercialStorage/CommercialStorage.pdf

  54. Valenzuela, C., Tapia, C., Lopéz, L., Bunger, A., Escalona, V. & Abugoch, L. (2015). Effect of edible quinoa protein-chitosan based films on refrigerated strawberry (Fragaria × ananassa) quality. Electronic Journal of Biotechnology, 18(6), 406–411. DOI: https://doi. org/10.1016/j.ejbt.2015.09.001

  55. Wang, F., Deng, J., jiao, J., Lu, Y., Yang, L. & Shi, Z. (2019). The combined effects of carboxymethyl-chitosan and Cryptococcus laurentii treatment on postharvest blue mold caused by Penicillium italicum in grapefruit fruit. Scientia Horticulturae, 253(1), 35–41. DOI: https://doi. org/10.1016/j.scienta.2019.04.031

  56. Wu, C., Wang, L., Fang, Z., Hu, Y., Chen, S., Sugawara, T. & Ye. X. (2016). The effect of the molecular architecture on the antioxidant properties of chitosan gallate. Marine Drugs, 14(5), 95. DOI: 10.3390/md14050095

  57. Y., Li, X., Xu, Q., Yun, J., Lu, Y. & Tang, Y. (2011a). Effects of chitosan coating enriched with cinnamon oil on qualitative properties of sweet pepper (Capsicum annuum L.). Food Chemistry, 124(4), 1443–1450. DOI: https://doi. org/10.1016/j.foodchem.2010.07.105

  58. Xing, Y., Xu, Q., Che, Z., Li, X. & Li, W. (2011b). Effects of chitosan-oil coating on blue mold disease and quality attributes of jujube fruits. Food & Fucntion, 2(8), 446–474. DOI: 10.1039/c1fo10073d

  59. Xoca-Orozco, L. A., Cuellar-Torres, E. A., González-Morales, S., Gutiérrez-Martínez, P., López-García, U., Herrera- Estraella, L., Vega-Arreguín, J. & Chacón-López, A. (2017). Transcriptomic analysis of avocado Hass (Persea americana Mill) in the interaction system fruit-chitosancolletotrichum, Frontiers in Plant Science, 8, 956. DOI: 10.3389/fpls.2017.00956

  60. Xu, D., Qin, H. & Ren, D. (2018). Prolonged preservation of tangerine fruits using chitosan/montmorillonite composite coating. Postharvest Biology and Technology, 143(1), 50-57. DOI: https://doi.org/10.1016/j. postharvbio.2018.04.013

  61. Xu, W. T., Huang, K. L., Guo, F., Qu, W., Yang, J. J., Liang, Z. H. & Luo, Y.B. (2007). Postharvest grapefruit seed extract and chitosan treatments of table grapes to control Botrytis cinerea. Postharvest Biology and Technology, 46(1), 86–94. DOI: https://doi.org/10.1016/j.postharvbio.2007.03.019

  62. Yang, G., Yue, J., Gong, X., Qian, B., Wang, H., Deng, Y. & Zhao, Y. (2014). Blueberry leaf extracts incorporated chitosan coatings for preserving postharvest quality of fresh blueberries. Postharvest Biology and Technology, 92(1), 46- 53. DOI: https://doi.org/10.1016/j.postharvbio.2014.01.018

  63. Yin, C., Huang, C., Wang, J., Liu, Y., Lu, P. & Huang, L. (2019). Effect of chitosan- and alginate-based coatings enriched with cinnamon essential oil microcapsules to improve the postharvest quality of mangoes. Materials, 12, 2039. DOI: https://doi.org/10.3390/ma12132039

  64. Youwei, Y. & Yinzhe, R. (2013). Grape preservation using chitosan combined with B-cyclodextrin. International Journal of Agronomy, ID: 209235, 1–8. DOI: http://dx.doi. org/10.1155/2013/209235

  65. Yuan, G., Chen, X. & Li, D. (2016). Chitosan films and coatings containing essential oils: The antioxidant and antimicrobial activity, and application in food systems. Food Research International, 89(1), 117–128. DOI: https:// doi.org/10.1016/j.foodres.2016.10.004

  66. Yu, Y., Zhang, S., Ren, Y., Li, H., Zhang, X. & Di, J. (2012). Jujube preservation using chitosan film with nano-silicon dioxide. Journal of Food Engineering, 113(3), 408–414. DOI: https://doi.org/10.1016/j.jfoodeng.2012.06.021

  67. Zhang, D., Wang, H., Hu, Y. & Liu, Y. (2015a). Chitosan controls postharvest decay on cherry tomato fruit possibly via the mitogen-activated protein kinase signaling pathway. Journal of Agricultural and Food Chemistry, 63, 7399–7404. DOI: https://doi.org/10.1021/acs.jafc.5b01566

  68. Zhang, L., Chen, F., Lai, L., Wang, H. & Yang, H. (2018). Impact of soybean protein isolate-chitosan edible coating on the softening of apricot fruit during storage. LWT - Food Science and Technology, 96(1), 604–611. DOI: https://doi. org/10.1016/j.lwt.2018.06.011

  69. Zhang, Y., Zhang, M. & Yang, H. (2015b). Postharvest chitosang- salicylic acid application alleviates chilling injury and preserves cucumber fruit quality during cold storage. Food Chemistry, 174(1), 558–563. DOI: https://doi.org/10.1016/j. foodchem.2014.11.106




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2020;23

ARTíCULOS SIMILARES

CARGANDO ...