medigraphic.com
ENGLISH

Archivos de Cardiología de México

  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2004, Número s2

<< Anterior Siguiente >>

Arch Cardiol Mex 2004; 74 (s2)


Los rotores y la fibrilación

Jalife J
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 24
Paginas: 289-292
Archivo PDF: 48.77 Kb.


PALABRAS CLAVE

Fibrilación atrial y ventricular, Biofísica de canales iónicos, Propagación de ondas no lineales.

RESUMEN

La generación de la fibrilación auricular o ventricular es todavía un extenso campo de discusión y de investigación en electrofisiología básica y clínica. Nuevas hipótesis acerca de la dinámica de propagación de ondas no lineales en medios excitables se enfocan hacia el papel que juegan los rotores en el mecanismo de la fibrilación y han dado lugar a dos corrientes de pensamiento. Una, propone una característica de inestabilidad y transitoriedad de los rotores y otra propone su fractura y su multiplicación en un medio de anisotropía estructural miocárdica. La integración del conocimiento de la dinámica de propagación de ondas no lineales, con las recientes aportaciones de la biología molecular y la biofísica de los canales iónicos es de una importancia indiscutible en el desarrollo futuro de una terapia antifibrilatoria.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Zipes DP, Wellens HJ: Sudden cardiac death. Circulation 1998; 98: 2334-2351.

  2. Zipes DP, Jalife J, editors: Cardiac electrophysiology from cell to bedside. Philadelphia, PA: W.B. Saunders, 2000.

  3. Frazier DW, Wharton JM, Wolf PD, Smith WM, Ideker RE: Mapping the electrical initiation of ventricular fibrillation. Journal of Electrocardiology 1989; 22 Suppl: 198-199.

  4. Davidenko JM, Pertsov AV, Salomonsz R, Baxter W, Jalife J: Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 1992; 355: 349-351.

  5. Jalife J: Ventricular fibrillation: mechanisms of initiation and maintenance. Annual Review of Physiology 2000; 62: 25-50.

  6. Garfinkel A, Chen PS, Walter DO, Karagueuzian HS, Kogan B, Evans SJ, Karpoukhin M, Hwang C, Uchida T, Gotoh M, Nwasokwa O, Sager P, Weiss JN: Quasiperiodicity and chaos in cardiac fibrillation. Journal of Clinical Investigation 1997; 99: 305-314.

  7. Samie FH, Mandapati R, Gray RA, Watanabe Y, Zuur C, Beaumont J, Jalife J: A mechanism of transition from ventricular fibrillation to tachycardia : effect of calcium channel blockade on the dynamics of rotating waves. Circ Res. 2000; 86: 684-691.

  8. Jalife J, Davidenko J, Michaels D: A new perspective on the mechanisms of arrhythmias and sudden cardiac death: Spiral waves of excitation in heart muscle. Journal of Cardiovascular Electrophysiology 1991; 2: S133-S152.

  9. Fenton F, Karma A: Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation. Chaos 1998; 8: 20-47.

  10. Riccio ML, Koller ML, Gilmour RF, Jr: Electrical restitution and spatiotemporal organization during ventricular fibrillation. Circulation Research 1999; 84: 955-963.

  11. Karma A: Electrical alternans and spiral wave breakup in cardiac tissue. Chaos 1994; 4: 461-472.

  12. Weiss JN, Garfinkel A, Karagueuzian HS, Qu Z, Chen PS: Chaos and the transition to ventricular fibrillation: a new approach to antiarrhythmic drug evaluation. Circulation 1999; 99: 2819-2826.

  13. Fenton FH, Cherry EM, Hastings HM, Evans SJ: Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity. Chaos. 2002; 12: 852-892.

  14. Banville I, Gray RA: Effect of action potential duration and conduction velocity restitution and their spatial dispersion on alternans and the stability of arrhythmias. J Cardiovasc Electrophysiol. 2002; 13: 1141-1149.

  15. Pertsov AM, Davidenko JM, Salomonsz R, Baxter WT, Jalife J: Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle. Circ Res. 1993; 72: 631-650.

  16. Gray RA, Jalife J, Panfilov AV, Baxter WT, Cabo C, Davidenko JM, Pertsov AM: Mechanisms of cardiac fibrillation. Science 1995; 270: 1222-1223.

  17. Jalife J, Gray RA, Morley G, Davidenko J: Self-organization and the dynamical nature of ventricular fibrillation. Chaos 1998; 8: 79-93.

  18. Gray RA, Jalife J, Panfilov A, Baxter WT, Cabo C, Davidenko JM, Pertsov AM: Nonstationary vortexlike reentrant activity as a mechanism of polymorphic ventricular tachycardia in the isolated rabbit heart. Circulation 1995; 91: 2454-2469.

  19. Jalife J, Gray R: Drifting vortices of electrical waves underlie ventricular fibrillation in the rabbit heart. Acta Physiologica Scandinavica 1996; 157: 123-131.

  20. Jalife J, Berenfeld O, Skanes A, Mandapati R: Mechanisms of atrial fibrillation: mother rotors or multiple daughter wavelets, or both? Journal of Cardiovascular Electrophysiology 1998; 9(8 Suppl): S2-12.

  21. Gray RA, Jalife J, Panfilov A, Baxter WT, Cabo C, Davidenko JM, Pertsov AM: Nonstationary vortexlike reentrant activity as a mechanism of polymorphic ventricular tachycardia in the isolated rabbit heart. Circulation. 1995; 91: 2454-69.

  22. Samie FH, Berenfeld O, Anumonwo J, et al: Rectification of the background potassium current: a determinant of rotor dynamics in ventricular fibrillation. Circ Res 2001; 89: 1216-1223.

  23. Warren M, Guha PK, Berenfeld O, et al: Blockade of the inward rectifying potassium current terminates ventricular fibrillation in the guinea pig heart. J Cardiovasc Electrophysiol. 2003; 14: 621-631.

  24. Moe GK: On the multiple wavelet hypothesis of atrial fibrillation. Arch Int Pharmacodyn Ther 1962; 140: 183-188.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Arch Cardiol Mex. 2004;74

ARTíCULOS SIMILARES

CARGANDO ...