medigraphic.com
SPANISH

Archivos de Neurociencias

Instituto Nacional de Neurología y Neurocirugía
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2021, Number 2

<< Back Next >>

Arch Neurocien 2021; 26 (2)

Glutamine-mediated nitric oxide synthase inhibition might explain the ‘arginine paradox’

Pérez-Neri I, Ríos-Castañeda C
Full text How to cite this article

Language: English
References: 18
Page: 7-9
PDF size: 192.09 Kb.


Key words:

No keywords

Text Extraction

From several studies, it has been described that nitric oxide synthase(NOS) activity increases if extracellular arginine levels are elevated despite of the high intracellular amino acid level (0.1 - 2 mM in endothelial cells 3 ), which would maintain the enzyme saturated. This ‘arginine paradox’ may be explained by several mechanisms including amino acid transport, translational control and the presence of endogenous NOS inhibitors.
Increasing extracellular arginine concentration (10-1000 µM), in a range including levels found in neurologic patients, favors an increased cytokine-activated inducible NOS (iNOS) activity in cultured astrocytes through a translational mechanism. Also, at the 100-µM extracellular level, arginine increases nitrite synthesis by endothelial cells.


REFERENCES

  1. Flam BR, Hartmann PJ, Harrell-Booth M, Solomonson LP, Eichler DC. Caveolar localization of arginine regeneration enzymes, argininosuccinate synthase, and lyase, with endothelial nitric oxide synthase. Nitric Oxide. 2001; 5(2):187-197. DOI: 10.1006/niox.2001.0340

  2. Mathewson AM, Wadsworth RM. Induction of iNOS restricts functional activity of both eNOS and nNOS in pig cerebral artery. Nitric Oxide. 2004; 11(4):331-339. Doi: 10.1016/j. niox.2004.10.006

  3. Gornik HL, Creager MA. Arginine and endothelial and vascular health. J Nutr. 2004;134(S10):2880S-2887S; discussion 2895S. DOI: 10.1093/jn/134.10.2880S

  4. Salter M, Duffy C, Garthwaite J, Strijbos PJ. Ex vivo measurement of brain tissue nitrite and nitrate accurately reflects nitric oxide synthase activity in vivo. J Neurochem. 1996; 66(4):1683-1690. DOI: 10.1046/j.1471-4159.1996.66041683.x

  5. Lee J, Ryu H, Ferrante RJ, Morris SM, Ratan RR. Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox. Proc Natl Acad Sci U S A. 2003;100(8):4843- 4848. DOI: 10.1073/pnas.0735876100

  6. Morris Jr SM. Enzymes of arginine metabolism. J Nutr. 2004;134(10):2743S-2747S. DOI: 10.1093/jn/134.10.2743S

  7. Pérez-Neri I, Ramírez-Bermúdez J, Ojeda-López C, Montes S, Soto-Hernández JL, Ríos C. Las concentraciones de glutamina y citrulina reflejan la síntesis del óxido nítrico en el sistema nervioso humano. Neurología. 2020;35(2):96-104. DOI: 10.1016/j. nrl.2017.07.013

  8. Shin S, Mohan S, Fung HL. Intracellular L-arginine concentration does not determine NO production in endothelial cells: implications on the “L-arginine paradox”. Biochem Biophys Res Commun. 2011; 414(4):660-663. Doi: 10.1016/j. bbrc.2011.09.112

  9. Aisaka K, Gross SS, et al. L-arginine availability determines the duration of acetylcholine-induced systemic vasodilatation in vivo. Biochem Biophys Res Commun. 1989;163(2):710-717. https://doi. org/10.1016/0006-291X(89)92281-X

  10. Gold ME, Bush PA, Ignarro LJ. Depletion of arterial L-arginine causes reversible tolerance to endothelium-dependent relaxation. Biochem Biophys Res Commun. 1989;164(2):714-721. DOI: 10.1016/0006-291x(89)91518-0

  11. Ogawa T, Kimoto M, Sasaoka K. Purification and properties of a new enzyme, NG,NG-dimethylarginine dimethylaminohydrolase, from rat kidney. J Biol Chem. 1989;264(17):10205-10209.

  12. Tsikas D, Böger RH, Sandmann J, Bode-Böger SM, Frölich JC. Endogenous nitric oxide synthase inhibitors are responsible for the L-arginine paradox. FEBS Lett. 2000;478(1-2):1-3. DOI: 10.1016/s0014-5793(00)01686-0

  13. Closs EI, Scheld JS, Sharafi M, Förstermann U. Substrate supply for nitric-oxide synthase in macrophages and endothelial cells: role of cationic amino acid transporters. Mol Pharmacol. 2000;57(1):68-74.

  14. Arnal JF, Münzel T, Venema RC, James NL, Bai CL, Mitch WE et al. Interactions between L-arginine and L-glutamine change endothelial NO production. An effect independent of NO synthase substrate availability. J Clin Invest. 1995;95(6):2565-2572. DOI: 10.1172/JCI117957

  15. Bryk J, Ochoa JB, Correia MI, Munera-Seeley V, Popovic PJ. Effect of citrulline and glutamine on nitric oxide production in RAW 264.7 cells in an arginine-depleted environment. J Parenter Enteral Nutr. 2008;32(4):377-383. DOI: 10.1177/0148607108319807

  16. Rochette L, Lorin J, Zeller M, Guilland JC, Lorgis L, Cottin Y et al. Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets. Pharmacol Ther. 2013;140(3):239-257. DOI: 10.1016/j.pharmthera.2013.07.004

  17. Gambardella J, Khondkar W, Morelli MB, Wang X, Santulli G, Trimarco V. Arginine and Endothelial Function. Biomedicines. 2020;8:277. https:// doi.org/10.3390/biomedicines8080277

  18. Durante W. The Emerging Role of l-Glutamine in Cardiovascular Health and Disease. Nutrients. 2019;11(9) DOI: 10.3390/nu11092092




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Arch Neurocien. 2021;26