medigraphic.com
SPANISH

Enfermedades Infecciosas y Microbiología

  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 4

<< Back Next >>

Enf Infec Microbiol 2020; 40 (4)

Human coronaviruses causing serious syndromes: SARS, MERS and COVID-19

Rosales RJA, De León MJJ, Macías AE
Full text How to cite this article

Language: Spanish
References: 86
Page: 141-154
PDF size: 371.29 Kb.


Key words:

SARS-COV, MERS-COV, SARS-COV-2.

ABSTRACT

Among the human coronaviruses that have a high degree of pathogenicity we include the SARS-COV, causing the severe acute respiratory syndrome; the MERS-COV, causing the Middle East respiratory syndrome; and the new SARS-COV-2, causing the COVID-19. This review of severe coronavirus syndromes deals with aspects related to their pathogenesis, the syndromes they cause and their clinical manifestations, their diagnosis, their management and their complications.


REFERENCES

  1. Al-Omari, A., Raban, A.A., Salih, S., Al-Tawfiq J.A., y Memish, Z.A., “mers coronavirus outbreak: implications for emerging viral infections”, Diagn Microbiol Infect Dis, 2019, 93 (3): 265-285. doi: org/10.1016/j.diagmicrobio. 2018.10.011.

  2. De Wilde, A.H., Snidjer, E.J., Kikkert, M. y Van Hemert M.J. “Host factors in coronavirus replication”, en Roles of host gene and non-coding rna expression in virus infection, vol 416, pp. 1-42. doi: org/10.1007/82_2017_25.

  3. Cui, J., Fang, L. y Zheng-Li, S., “Origin and evolution of pathogenic coronaviruses”, Nat Rev Microbiol, 2019, 17: 181-192. doi: org/10.1038/s41579-018-0118-9.

  4. Fehr, A.R. y Perlman, S. “Coronaviruses: An overview of their replication and pathogenesis”, Coronaviruses Methods Mol Biol, 2015, 1282: 1-23. doi: doi.org/10.1007/978- 1-4939-2438-7_1.

  5. Lau, S.K.P., Fan, R.Y.Y., Luk, H.K.H, et al., “Replication of mers and sars coronaviruses in bat cells offers insights to their ancestral origins”, Emerg Microbes Infect, 2018, 7 (1): 1-11. doi:10.1038/s41426-018-0208-9.

  6. Corman, V.M., Lienau, J. y Witzenrath, M., “Coronaviren als ursache respiratorischer infektionen, Internist (Berlín), 2019, 60: 1136-1145. doi: org/10.1007/s00108-019- 00671-5.

  7. Chan, J.F.W, Kok, K.H., Zhu, Z., Chu, H., Kai-Wang, K. et al., “Genomic characterization of the 2019 novel humanpathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan”, Emerg Microbes Infect, 2020, 9 (1): 221-236. doi: org/10.1080/22221751. 2020.1719902.

  8. Nelemans, T. y Kikkert, M., “Viral innate immune evasion and the pathogenesis of emerging rna virus infections”, Viruses, 2019, 11 (10): 961. doi: 10.3390/v11100961.

  9. Zhu, N., Zhang, D., Wang, W., Li, X., Bo Yang, M.S., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P. y Faxian Zhan, P., “A novel coronavirus from patients with pneumonia in China”, 2019, N Engl J Med, 2020. doi: 10.1056/ NEJMoa2001017.

  10. Peng, W., Xinxin, H., Lau, Y.E., Wong, Y.J., Leung, K.S., Wu T.J. y Cowling, B.J., “Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020”, Eur J Infect Dis surveillance, Epidemiol Prev Control, 2020, 25 (3). doi: 10.2807/1560-7917.ES.2020.25.3.2000044.

  11. Channappanavar, R. y Perlman, S., “Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology”, Semin Immunopathol, 2017, 39: 529-539. doi: doi.org/10.1007/s00281- 017-0629-x.

  12. Corman, V.M., Lienau, J. y Witzenrath, M., “Coronaviren als ursache respiratorischer infektionen, Internist (Berlín), 2019, 60: 1136-1145. doi: org/10.1007/s00108-019- 00671-5.

  13. Guangwen, L., Wang, Q. y Gao, G.F., “Bat-to-human: spike features determining ‘host jump’ of coronaviruses sars-cov, mers-cov, and beyond”, Trends Microbiol, 2015, 23 (8): 468-478. doi: doi.org/10.1016/j.tim.2015.06.003.

  14. Chaolin, M.H., Yeming M.W., Xingwang M.L., Lili, P.R., Jianping, M.Z. y Hu, M.Y., “Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China”, The Lancet, 2020, 395 (10223): 497-456. doi: doi. org/10.1016/S0140-6736(20)30183-5.

  15. Nour, R. y Houssam, S., “Middle East respiratory syndrome coronavirus (mers-cov): a review”, Germs, 2019, 9 (1): 35-42. doi: 10.18683/germs.2019.1155.

  16. Yin, Y., Wunderink, R.G., “mers, sars and other coronaviruses as causes of pneumonia”, Off J Asian Pacific Soc Respirol, 2017, 23 (2): 130-137. doi: org/10.1111/resp.13196.

  17. Zhiqi, S., Yanfeng, X., Bao, L., Zhang, L., Yu, P., Qu, Y., Zhu, H., Zhao, W., Han, Y. y Qib, Ch., “From sars to mers, thrusting coronaviruses into the spotlight”, Viruses, 2019, 11 (1): 59. doi: org/10.3390/v11010059.

  18. Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y. et al., “Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding, The Lancet, 2020, doi: org/10.1016/S0140-6736(20)30251-8.

  19. Jiang, X., Rayner, S. y Luo, M., “Does sars-cov-2 has a longer incubation period than sars and mers?”, Journal of Medical Virology, 2020, 92 (5): 476-478. doi: org/10.1002/ jmv.25708.

  20. Xiao, C., Li, X., Liu, S., Sang, Y., Gao, S.J. y Gao, F., “hiv-1 did not contribute to the 2019-ncov genome”, Emerging Microbes & Infections, 2020, 9(1): 378–381. doi: org/10.1 080/22221751.2020.1727299.

  21. Gandhi, R.T., Lynch, J.B. y Del Río, C. “Mild or moderate covid-19”, New England Journal of Medicine, 2020, 383: 1757-1766. doi: 10.1056/nejmcp2009249.

  22. Siordia, J.A., “Epidemiology and clinical features of covid-19: a review of current literature”, Journal of Clinical Virology, 2020, 127: 104357. doi: org/10.1016/j. jcv.2020.104357.

  23. Kampf, G., “Potential role of inanimate surfaces for the spread of coronaviruses and their inactivation with disinfectant agents”, Infection Prevention in Practice, 2020, 2 (2): 100044. doi: org/10.1016/j.infpip.2020.100044.

  24. Kampf, G., Todt, D., Pfaender, S. y Steinmann, E., “Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents”, Journal of Hospital Infection, 2020, 104 (3): 246-251. doi: org/10.1016/j. jhin.2020.01.022.

  25. Khan, S., Siddique, R., Shereen, M.A., Ali, A., Liu, J., Bai, Q., Bashir, N. y Xue, M., “Emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2: biology and therapeutic options”, Journal of Clinical Microbiology, 2020, 58 (5). doi: org/10.1128/JCM.00187-20.

  26. Channappanavar, R. y Perlman, S., “Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology”, Semin Immunopathol, 2017, 39: 529-539. doi: org/10.1007/s00281-017- 0629-x.

  27. Corman, V.M., Muth, D. y Niemeyer, D., “Hosts and sources of endemic human coronaviruses”, Adv Virus Res, 2018, 100:163-188.

  28. Cockrell, S.A., Leist, R. y Sarah, G., “Modeling pathogenesis of emergent and pre-emergent human coronaviruses in mice”, Mamm Genome, 2018, 29 (7): 367-383. doi: 10.1007/s00335-018-9760-9.

  29. Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T.S., Herrler, G., Wu, N.-H., Nitsche, A., Müller, M.A., Drosten, C. y Pöhlmann, S., “sars-cov-2 cell entry depends on ace2 and tmprss2 and is blocked by a clinically proven protease inhibitor”, Cell, 2020, 181 (2): 271-280.e8. doi: org/10.1016/j. cell.2020.02.052.

  30. Hui, D.S., “Epidemic and emerging coronaviruses (severe acute respiratory syndrome and Middle East respiratory syndrome)”, Clin Chest Med, 2017, 38 (1): 71-86. doi: org/10.1016/j.ccm.2016.11.007.

  31. Zeng, Z.-Q., Chen, D.-E., Tan, W.-P., Qiu, S.-Y., Xu, D., Liang, H.-X., Chen, M.-X., Li, X., Lin, Z.-S., Liu, W.-K. y Zhow, R., “Epidemiology and clinical characteristics of human coronaviruses oc43, 229e, nl63, and hku1: a study of hospitalized children with acute respiratory tract infection in Guangzhou, China”, Eur J Clin Microbiol Infect Dis, 2018, 37: 363-369. doi: org/10.1007/s10096-017-3144-z.

  32. Willman, M. y Kobasa, D., “A comparative analysis of factors influencing two outbreaks of Middle Eastern respiratory syndrome (mers) in Saudi Arabia and South Korea”, Viruses, 2017, 11 (12). doi: org/10.3390/v11121119.

  33. Hui, D.S., Azhar, E.I., Kim, Y.-J., Memish, Z.A., Oh, M.D. y Zumla, A., “Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission”, Lancet Infect Dis, 2018, 18 (8): 217-227. doi: org/10.1016/S1473-3099(18)30127-0.

  34. Chafekar, A. y Fielding, B.C., “mers-cov: understanding the latest human coronavirus threat”, Viruses, 2018, 10 (2): 93. doi: 10.3390/v10020093.

  35. Gralinski, L.E. y Menacheri, V.D., “Return of the coronavirus: 2019-ncov”, Viruses, 2020, 12 (2): 135. doi: org/10.3390/v12020135.

  36. De Wit, E., Van Doremalen, N., Falzarano, D. y Munster, V.J., “sars and mers: recent insights into emerging coronaviruses”, Nat Rev Microbiol, 2016, 14: 523-534. doi: org/10.1038/nrmicro.2016.81.

  37. Wernery, W., Lau, S.K.P. y Woo, P.C.Y., “Genomics and zoonotic infections: Middle East respiratory syndrome”, Sci Tech Rev, 2016, 35 (1): 191-202. doi: 10.20506/ rst.35.1.2427.

  38. Wan, Y., Shang, J., Graham, R. y Rachel, Baric, R.S. y Li, F., “Receptor recognition by novel coronavirus from Wuhan: an analysis based on decade-long structural studies of sars”, Am Soc Biol J Virol, 2020. doi: 10.1128/JVI.00127-20.

  39. Liu, L., Wei, Q., Lin, Q., Fang, J., Wang, H. y Kwok, H., “Anti-spike igg causes severe acute lung injury by skewing macrophage responses during acute sars-cov infection”, jci Insight Am Soc Clin Investig, 2019, 4 (4). doi: 10.1172/ jci.insight.123158.

  40. Rock, B., Kuiken, T., Herfst, S., Bestebroer, T., Lamers, M.M., Oude Munnink, B.B., De Meulder, D., Van Amerongen, G., Van den Brand, J., Okba, N.M.A., Schipper, D., Van Run, P., Leijten, L., Sikkema, R., Verschoor, E., Verstrepen, B., Bogers, W., Langermans, J., Drosten, C., y Haagmans, B.L., “Comparative pathogenesis of covid-19, mers, and sars in a nonhuman primate model”, Science, 2020, eabb7314. doi: org/10.1126/science.abb7314.

  41. Cruz, A.T. y Zeichner, S.L., “covid-19 in children: initial characterization of the pediatric disease”, Pediatrics, 2020, e20200834. doi.org/10.1542/peds.2020-0834.

  42. Lu, Q. y Shi, Y. “Coronavirus disease (covid-19) and neonate: what neonatologist need to know”, Journal of Medical Virology, 2020, 92 (6): 564-567. doi: org/10.1002/ jmv.25740.

  43. Lu, X., Zhang, L., Du, H., Zhang, J., Li, YY., Qu, J., Zhang, W., Wang, Y., Bao, S., Li, Y., Wu, C., Liu, H., Liu, D., Shao, J., Peng, X., Yang, Y., Liu, Z., Xiang, Y., Zhang, F., Wong y G.W.K., “sars-cov-2 infection in children”, New England Journal of Medicine, 2020, 382 (17): 1663-1665. doi: org/10.1056/NEJMc2005073.

  44. Cristiani, L., Mancino, E., Matera, L., Nenna, R., Pierangeli, A., Scagnolari, C. y Midulla, F., “Will children reveal their secret? The coronavirus dilemma”, European Respiratory Journal, 2020, 55 (4): 2000749. doi: org/10.1183/13993003.00749-2020.

  45. Zimmermann, P. y Curtis, N., “Coronavirus infections in children including covid-19”, The Pediatric Infectious Disease Journal, 2020, 39 (5), 355-368. doi: org/10.1097/ INF.0000000000002660.

  46. Di Mascio, D., Khalil, A., Saccone, G., Rizzo, G., Buca, D., Liberati, M., Vecchiet, J., Nappi, L., Scambia, G., Berghella, V. y D’Antonio, F., “Outcome of coronavirus spectrum infections (sars, mers, covid-19) during pregnancy: a systematic review and meta-analysis”, American Journal of Obstetrics & Gynecology mfm, 2020, 100107. doi: org/10.1016/j.ajogmf.2020.100107.

  47. Chan, J.F.W., Sridhar, S., Yip, C.C.Y., Lau, S.K.P. y Woo, P.C.Y., “The role of laboratory diagnostics in emerging viral infections: the example of the Middle East respiratory syndrome epidemic”, J Microbiol, 2017, 55: 172-182. doi: 10.1007/s12275-017-7026-y.

  48. Woo, P.C.Y, Lau, S.K.P., Chen, Y., Wong, E.Y.M., Chan, K.- H. y Chen, H., “Rapid detection of mers coronavirus-like viruses in bats: potential for tracking mers coronavirus transmission and animal origin”, Emerg Microbes Infect, 2018, 7 (1). doi: 10.1038/s41426-017-0016-7.

  49. Jonsdottir, H.R. y Dikjman, R., “Coronaviruses and the human airway: a universal system for virus-host interaction studies”, Virol Journal, 2016, 13. doi: 10.1186/ s12985-016-0479-5.

  50. Agostini, M.L. Andres, E.L., Sims, A.C., Graham, R.L., Sheahan, T.P., Lu, X., Smith, E.C., Case, J.B., Feng, J.Y. y Jordan, S.R., “Coronavirus susceptibility to the antiviral remdesivir (gs-5734) is mediated by the viral polymerase and the proofreading exoribonuclease”, Bio Am Soc Microbiol, 2018, e00221-18. doi: 10.1128/mBio.00221-18.

  51. Yanqun, W., Jing, S., Airu, Z. y Jingxian Z., “Current understanding of Middle East respiratory syndrome coronavirus infection in human and animal models”, J Thorac Dis, 2018, 10: 2260-2271. doi: 10.21037/jtd.2018.03.80.

  52. Al-Amri, S.S., Abbas, A.T., Siddiq, L.A. et al., “Immunogenicity of candidate mers-cov dna vaccines based on the spike protein” Sci Rep, 2017, 7 (1): 44875. doi: 10.1038/ srep44875.

  53. Zhang, S.-F., Tuo, J.-L., Huang, X.-B., Zhu, X., Zhang, D.-X., Zhou, K., y Yuan, H., “Epidemiology characteristics of human coronaviruses in patients with respiratory infection symptoms and phylogenetic analysis of hcov-oc43 during 2010-2015 in Guangzhou”, plos One, 2018. doi: 10.1371/ journal.pone.0191789.

  54. Schrezenmeier, E. y Dörner, T., “Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology”, Nature Reviews Rheumatology, 2020, 16 (3): 155-166. doi.org/10.1038/s41584-020-0372-x.

  55. Liu, J., Cao, R., Xu, M., Wang, X., Zhang, H., Hu, H., Li, Y., Hu, Z., Zhong, W. y Wang, M. “Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting sars-cov-2 infection in vitro”, Cell Discovery, 2020, 6 (1): 16. doi: org/10.1038/s41421-020-0156-0.

  56. Juurlink, D.N., “Safety considerations with chloroquine, hydroxychloroquine and azithromycin in the management of sars-cov-2 infection”, Canadian Medical Association Journal, 2020, 192 (17): e450–e453. doi: org/10.1503/ cmaj.200528.

  57. Gautret, P., Lagier, J.-C., Parola, P., Hoang, V.T., Meddeb, L., Sevestre, J., Mailhe, M., Doudier, B., Aubry, C., Amrane, S., Seng, P., Hocquart, M., Eldin, C., Finance, J., Vieira, V.E., Tissot-Dupont, H.T., Honoré, S., Stein, A., Million, M. y Raoult, D., “Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 covid-19 patients with at least a six-day follow up: a pilot observational study”, Travel Medicine and Infectious Disease, 2020, 101663. doi: org/10.1016/j. tmaid.2020.101663.

  58. Wang, Y., Zhang, D., Du, G., Du, R., Zhao, J., Jin, Y., Fu, S., Gao, L., Cheng, Z., Lu, Q., Hu, Y., Luo, G., Wang, K., Lu, Y., Li, H., Wang, S., Ruan, S., Yang, C., Mei, C. y Wang, C., “Remdesivir in adults with severe covid-19: a randomised, double-blind, placebo-controlled, multicentre trial”, The Lancet, 2020. doi: org/10.1016/S0140-6736(20)31022-9.

  59. Gordon, C.J., Tchesnokov, E.P., Feng, J.Y., Porter, D.P. y Götte, M., “The antiviral compound remdesivir potently inhibits rna-dependent rna polymerase from Middle East respiratory syndrome coronavirus”, Journal of Biological Chemistry, 2020, 295 (15): 4773-4779. doi: org/10.1074/ jbc.AC120.013056.

  60. De Wit, E., Feldmann, F., Cronin, J., Jordan, R., Okumura, A., Thomas, T., Scott, D., Cihlar, T. y Feldmann, H., “Prophylactic and therapeutic remdesivir (gs-5734) treatment in the rhesus macaque model of mers-cov infection”, Proceedings of the National Academy of Sciences, 2020, 117 (12): 6771-6776. doi: org/10.1073/pnas.1922083117.

  61. Duan, K., Liu, B., Li, C., Zhang, H., Yu, T., Qu, J., Zhou, M., Chen, L., Meng, S., Hu, Y., Peng, C., Yuan, M., Huang, J., Wang, Z., Yu, J., Gao, X., Wang, D., Yu, X., Li, L. y Yang, X., “Effectiveness of convalescent plasma therapy in severe covid-19 patients”, Proceedings of the National Academy of Sciences, 2020, 117 (17), 9490-9496. doi: org/10.1073/ pnas.2004168117.

  62. Chen, L., Xiong, J., Bao, L. y Shi, Y., “Convalescent plasma as a potential therapy for covid-19”, The Lancet Infectious Diseases, 2020, 20 (4), 398-400. doi: org/10.1016/ S1473-3099(20)30141-9.

  63. Dubé, M., Le Coupanec, A., Wong, A.H.M., Rini, J.M., Desforges, M. y Talbot, P.J., “Axonal transport enables neuron-to-neuron propagation of human coronavirus oc43”, J Virol, 2018, 92 (17). doi: 10.1128/JVI.00404-18.

  64. Morfopoulou, S., Brown, J.R., Davies, E.G. et al., “Human coronavirus oc43 associated with fatal encephalitis”, N Engl J Med, 2016, 375 (5): 497-498. doi: 10.1056/NEJMc1509458.

  65. Morfopoulou, S., Brown, J.R., Davies, E.G. et al., “Human coronavirus oc43 associated with fatal encephalitis”, N Engl J Med, 2016, 375 (5):497-498. doi 10.1056/NEJMc1509458.

  66. Lee, J.Y., Kim, Y.-J., Chung, E.H. et al., “The clinical and virological features of the first imported case causing mers-cov outbreak in South Korea, 2015”, bmc Infect Dis, 2017, 17 (1): 498. doi: 10.1186/s12879-017-2576-5.

  67. Ye, R. y Liu, Z., “ace2 exhibits protective effects against lpsinduced acute lung injury in mice by inhibiting the lps-tlr4 pathway”, Experimental and Molecular Pathology, 2020, 113, 104350. doi: org/10.1016/j.yexmp.2019.104350.

  68. Das, G., Mukherjee, N. y Ghosh, S., “Neurological insights of covid-19 pandemic”, acs Chemical Neuroscience, 2020, acschemneuro.0c00201. doi: org/10.1021/ acschemneuro.0c00201.

  69. Toljan, K., “Letter to the editor regarding the viewpoint Evidence of the covid-19 virus targeting the cns: tissue distribution, host-virus interaction, and proposed neurotropic mechanism”, acs Chemical Neuroscience, 2020, 11 (8): 1192-1194. doi: org/10.1021/acschemneuro.0c00174.

  70. Zhao, M., “Cytokine storm and immunomodulatory therapy in covid-19: role of chloroquine and anti-il-6 monoclonal antibodies”, International Journal of Antimicrobial Agents, 2020, 105982. doi: org/10.1016/j.ijantimicag. 2020.105982.

  71. Mehta, P., McAuley, D.F., Brown, M., Sánchez, E., Tattersall, R.S. y Manson, J.J., “covid-19: consider cytokine storm syndromes and immunosuppression”, The Lancet, 2020, 395 (10229): 1033-1034. doi: org/10.1016/S0140- 6736(20)30628-0.

  72. Poyiadji, N., Shahin, G., Noujaim, D., Stone, M., Patel, S. y Griffith, B., “covid-19 associated acute hemorrhagic necrotizing encephalopathy: ct and mri features”, Radiology, 2020, 201187. doi: org/10.1148/radiol.2020201187.

  73. Yin, S., Huang, M., Li, D. y Tang, N. “Difference of coagulation features between severe pneumonia induced by sars-cov.2 and non-sars-cov.2”, Journal of Thrombosis and Thrombolysis, 2020. doi: org/10.1007/s11239-020-02105-8.

  74. Tang, N., Bai, H., Chen, X., Gong, J., Li, D. y Sun, Z., “Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy”, Journal of Thrombosis and Haemostasis, 2020, 18 (5), 1094-1099. doi: org/10.1111/jth.14817.

  75. Yang, X., Yu, Y., Xu, J., Shu, H., Xia, J., Liu, H., Wu, Y., Zhang, L., Yu, Z., Fang, M., Yu, T., Wang, Y., Pan, S., Zou, X., Yuan, S. y Shang, Y., “Clinical course and outcomes of critically ill patients with sars-cov-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study”, The Lancet Respiratory Medicine, 2020, 8 (5), 475-481. doi: org/10.1016/S2213-2600(20)30079-5.

  76. Xu, R., Cui, B., Duan, X., Zhang, P., Zhou, X. y Yuan, Q., “Saliva: potential diagnostic value and transmission of 2019-ncov”, International Journal of Oral Science, 2020, 12 (1): 11. doi: org/10.1038/s41368-020-0080-z.

  77. Barlow, A., Landolf, K.M., Barlow, B., Yeung, S.Y.A., Heavner, J.J., Claassen, C.W. y Heavner, M.S., “Review of emerging pharmacotherapy for the treatment of coronavirus disease 2019”, Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 2020, 40 (5), 416-437. doi: org/10.1002/phar.2398.

  78. Mehra, M.R., Desai, S.S., Ruschitzka, F. y Patel, A.N., “retracted: hydroxychloroquine or chloroquine with or without a macrolide for treatment of covid-19: a multinational registry analysis”, The Lancet, 2020. doi: org/10.1016/ S0140-6736(20)31180-6.

  79. Mehra, M.R., Ruschitzka, F. y Patel, A.N., “Retraction: hydroxychloroquine or chloroquine with or without a macrolide for treatment of covid-19: a multinational registry analysis”, The Lancet, 2020. doi: org/10.1016/S0140- 6736(20)31324-6.

  80. Boulware, D.R., Pullen, M.F., Bangdiwala, A.S., Pastick, K.A., Lofgren, S.M., Okafor, E.C., Skipper, C.P., Nascene, A.A., Nicol, M.R., Abassi, M., Engen, N.W., Cheng, M.P., LaBar, D., Lother, S.A., MacKenzie, L.J., Drobot, G., Marten, N., Zarychanski, R., Kelly, L.E. y Hullsiek, K.H., “A randomized trial of hydroxychloroquine as postexposure prophylaxis for covid-19”, New England Journal of Medicine, 2020, nejmoa2016638. doi: org/10.1056/NEJMoa2016638.

  81. McKee, D.L., Sternberg, A., Stange, U., Laufer, S. y Naujokat, C., “Candidate drugs against sars-cov-2 and covid- 19”, Pharmacological Research, 2020, 157: 104859. doi: org/10.1016/j.phrs.2020.104859.

  82. Wu, R., Wang, L., Kuo, H.-C. D., Shannar, A., Peter, R., Chou, P.J., Li, S., Hudlikar, R., Liu, X., Liu, Z., Poiani, G.J., Amorosa, L., Brunetti, L. y Kong, A.-N., “An update on current therapeutic drugs treating covid-19”, Current Pharmacology Reports, 2020. doi: org/10.1007/s40495- 020-00216-7.

  83. Şimşek Yavuz, S.y Ünal, S., “Antiviral treatment of covid- 19”, Turkish Journal of Medical Sciences, 2020, 50 (SI- 1): 611-619. doi: org/10.3906/sag-2004-145.

  84. Yousefi, B., Valizadeh, S., Ghaffari, H., Vahedi, A., Karbalaei, M. y Eslami, M., “A global treatments for coronaviruses including covid-19”, Journal of Cellular Physiology, 2020, jcp.29785. doi: org/10.1002/jcp.29785.

  85. Wu, R., Wang, L., Kuo, H.-C.D., Shannar, A., Peter, R., Chou, P.J., Li, S., Hudlikar, R., Liu, X., Liu, Z., Poiani, G.J., Amorosa, L., Brunetti, L. y Kong, A.-N., “An update on current therapeutic drugs treating covid-19”, Current Pharmacology Reports, 2020. doi: org/10.1007/s40495- 020-00216-7.

  86. Gupta, Y., Meenu, M. y Mohan, P. “The tamiflu fiasco and lessons learnt”, Indian Journal of Pharmacology, 2015, 47 (1): 11. doi: org/10.4103/0253-7613.150308.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Enf Infec Microbiol. 2020;40