medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2021, Number 1

Next >>

TIP Rev Esp Cienc Quim Biol 2021; 24 (1)

Evaluation of commercial chitosan and aqueous extracts of coconut shell (Cocos nucifera L.) for the control of Rhizopus stolonifer isolated from soursop (Annona muricata L.): In vitro tests

Cortés-Rivera HJ, González-Estrada RR, Huerta-Ocampo JÁ, Blancas-Benítez FJ, Gutiérrez-Martínez P
Full text How to cite this article

Language: Spanish
References: 60
Page:
PDF size: 302.67 Kb.


Key words:

biopolymer, mesocarp, Cocos nucifera, phytopathogen, antifungal.

ABSTRACT

The antifungal effectiveness of aqueous extracts of coconut mesocarp (Cocos nucifera L.) (AEC) and commercial chitosan (CQ) applied individually and in combination was evaluated against Rhizopus stolonifer in terms of mycelial growth, sporulation, spore germination, as well the primary growth models at two storage temperatures (15-25 oC) was obtained. The use of AEC applied individually, significantly reduced the mycelial growth of R. stolonifer (› 45 %); on the other hand, CQ (1.5 %) showed up to 87 % of control, however, the combination of AEC (10 %) with CQ (1.5 %) was more effective in reducing mycelial growth (› 93 %). All treatments were effective in inhibiting spore production (› 94 %) compared to control (agar). CQ combined with AEC was more effective by inhibiting the germ tube elongation (› 98 %) compared to the individual treatments (‹ 48 %). The modified Gompertz model showed an adequate fit for both temperature ranges (› 98-99 %), observing significant differences (p ≤ 0.05) between the variables maximum speed (Vmax) and latency period (ƛ), however all treatments showed a fungistatic effect on the mycelial development of R. stolonifer. The combination of AEC and CQ can be an eco-friendly alternative against soft rot in soursop fruits.


REFERENCES

  1. Aguilar-Méndez, M. A., Campos-Arias, M. P., Quiroz-Reyes, C. N. & Ronquillo-de Jesús M. A. (2019). Fruit peels as sources of bioactive compounds with antioxidant and antimicrobial properties. Rev. FCA UNCUYO, 50, 112. Válido en: http://revistas.uncu.edu.ar/ojs/index.php/ RFCA/article/view/2945/2103.

  2. Aqil, F., Zahin, M., Ahmad, I., Owais, M., Khan, M. S. A., Bansal, S. S. & Farooq, S. (2010). Antifungal Activity of Medicinal Plant Extracts and Phytocompounds: A Review. In: Ahmad, I. (Ed.) Combating Fungal Infections. (pp. 449–484) Berlin: Springer. DOI: 10.1007/978-3-642- 12173-9_19

  3. Bajic, M., Rocnik, T., Oberlintner, A., Scognamiglio, F., Novak, U. & Likozar, B. (2019). Natural plant extracts as active components in chitosan-based films: A comparative study. Food Packaging and Shelf Life, 21, 1-8. DOI: https://doi.org/10.1016/j.fpsl.2019.100365.

  4. Bautista-Baños, S., Hernández-López, M., Díaz-Pérez, J. C. & Cano-Ochoa, C. F. (2000). Evaluation of the fungicidal properties of plant extracts to reduce Rhizopus stolonifer of “ciruela” fruit (Spondias purpurea L.) during storage. Postharvest Biology and Technology, 20, 99–106. DOI: https://doi.org/10.1016/ S0925-5214(00)00109-5.

  5. Bautista-Baños, S., Hernández-López, M. & Bosquez- Molina, E. (2004). Growth inhibition of selected fungi by chitosan and plant extracts. Revista Mexicana de Fitopatología, 22, 178–185. https://www.redalyc.org/ pdf/612/61222204.pdf.

  6. Bautista-Baños, S., Ventura-Aguilar, R. I., Correa-Pacheco, Z. & Corona-Rangel, M. L. (2017). Chitosan: a versatile antimicrobial polysaccharide for fruit and vegetables in postharvest – a review. Revista Chapingo Serie Horticultura, 23, 103-121. DOI: http://dx.doi. org/10.5154/r.rchsh.2016.11.030.

  7. Betchem, G., Nana A. N. & Wang, Y. (2019). The application of chitosan in the control of post ‑ harvest diseases: a review. Journal of Plant Diseases and Protection, 126, 495–507. DOI: https://doi.org/10.1007/s41348-019- 00248-2.

  8. Berumen-Varela, G., Hernández-Oñate, M. A. & Tiznado- Hernández, M. E. (2019). Utilization of biotechnological tools in soursop (Annona muricata L.). Scientia Horticulturae, 245, 269-273. DOI: https://doi. org/10.1016/j.scienta.2018.10.028.

  9. Bhagwat, M. K. & Datar, A. G. (2014). Antifungal activity of herbal extracts against plant pathogenic fungi. Archives of Phytopathology and Plant Protection, 47, 959-965. DOI: https://doi.org/10.1080/03235408.2013.826857

  10. Cerqueira, M. D., Barcellos, H., Machado, P., Aires, J. & Dummer, D. (2015). Antifungal activity of plant extracts with potential to control plant pathogens in pineapple Diana. Asian Pacific Journal of Tropical Biomedicine, 1, 26–31. DOI: https://doi.org/10.1016/j. apjtb.2015.09.026.

  11. Corato, U., Salimbeni, R., De Pretis, A., Avella, N. & Patruno, G. (2017). Antifungal activity of crude extracts from brown and red seaweeds by a supercritical carbon dioxide technique against fruit postharvest fungal diseases. Postharvest Biology and Technology, 131, 16–30. DOI: https://doi.org/10.1016/j.postharvbio.2017.04.011.

  12. Cortés-Rivera, H. J., González-Estrada, R. R. & Blancas- Benitez, F. J. (2019a). Extracción e identificación de compuestos bioactivos presentes en residuos de coco (Cocos nucifera) mesocarpio y exocarpio, y su potencial antifúngico. Tecnológico Nacional de México/Instituto Tecnológico de Tepic. pp: 1-65.

  13. Cortés-Rivera, H. J., Blancas-Benítez, F. J., Romero-Islas, L. C., Gutiérrez-Martínez, P. & González-Estrada, R. R. (2019b). In vitro evaluation of residues of coconut (Cocos nucifera L.) aqueous extracts, against the fungus Penicillium italicum. Emirates Journal of Food and Agriculture, 31, 613–617. DOI: 0.9755/ejfa.2019.v31. i8.1993.

  14. Dey, G., Chakraborty, M. & Mitra, A. (2005). Profiling C6- C3and C6-C1phenolic metabolites in Cocos nucifera. Journal of Plant Physiology, 162, 375–381. DOI: 10.1016/j.jplph.2004.08.006.

  15. Duran, M., Aday, M. S., Zorba, N. N. D., Temizkan, R., Büyükcan, M. B. & Caner, C. (2016). Potential of antimicrobial active packaging “containing natamycin, nisin, pomegranate and grape seed extract in chitosan coating” to extend shelf life of fresh strawberry. Food and Bioproducts Processing, 98, 354–363. DOI: 10.1016/j. fbp.2016.01.007.

  16. Feliziani, E., Romanazzi, G., Margosan, D. A., Mansour, M. F., Smilanick, J. L., Gu, S., Gohil, H. L. & Rubio-Ames, Z. (2013). Preharvest fungicide, potassium sorbate, or chitosan use on quality and storage decay of table grapes. Plant Disease, 97, 307–314. DOI: http://dx.doi. org/10.1094/ PDIS-12-11-1043-RE.

  17. Fiore, A. & Cigic, V. V. (2019). Bioactive compounds from food byproducts. Journal of Food Quality, 2019, 1–2. DOI: https://doi.org/10.1155/2019/6213792.

  18. García-Rincón, J., Vega-Pérez, J., Guerra-Sánchez, M. G., Hernández-Lauzardo, A. N., Peña-Díaz, A. & Velázquez del Valle, M. G. (2010). Effect of chitosan on growth and plasma membrane properties of Rhizopus stolonifer (Ehrenb.: Fr.) Vuill. Pesticide Biochemistry and Physiology, 97, 275–278. DOI: 10.1016/j. pestbp.2010.03.008.

  19. Ghaouth, A. E., Arul, J., Asselin, A. & Benhamou, N. (1992). Antifungal activity of chitosan on post-harvest pathogens: induction of morphological and cytological alterations in Rhizopus stolonifer. Mycological Research, 96, 769-779. DOI: https://doi.org/10.1016/ S0953-7562(09)80447-4.

  20. González-Estrada, R. R., Vega-Arreguín, J., Robles- Villanueva, B. A., Velázquez-Estrada, R. M., Ramos- Guerrero, A. & Gutiérrez-Martínez, P. (2020). Evaluación in vitro de productos químicos no convencionales para el control de Penicillium citrinum. Polibotánica, 49, 161- 172. DOI: 10.18387/polibotanica.49.11.

  21. Gutiérrez-Martinez, P., Ledezma-Morales, A., Romero-Islas, L. C., Ramos-Guerrero, A., Romero-Islas, J., Rodríguez- Pereida, C., Casas-Junco, P., Coronado-Partida, L. & González-Estrada, R. R. (2018). Antifungal activity of chitosan against postharvest fungi of tropical and subtropical fruits. In: Dongre, R. S. (Ed.) Chitin-Chitosan - Myriad Functionalities in Science and Technology. (pp. 311-322) London: IntechOpen. DOI: 10.5772/ intechopen.76095.

  22. Hee-Soo, P. & Jae-Hyuk, Y. (2012) Genetic control of asexual sporulation in filamentous fungi. Current Opinion in Microbiology. 15, 669-677. DOI: https://doi. org/10.1016/j.mib.2012.09.006.

  23. Hernández-Lauzardo, A. N., Bautista-Baños, S., Velázquezdel Valle, M. G., Méndez-Montealvo, M. G., Sánchez- Rivera, M. M. & Bello-Pérez, L. A. (2008). Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifer (Ehrenb.:Fr.) Vuill. Carbohydrate Polymers, 73, 541–547. DOI: 10.1016/j.carbpol.2007.12.020.

  24. Jiao, W., Chu, S., Li, X., Cao, J., Fan, X. & Jiang, W. (2019). Preparation of a chitosan-chlorogenic acid conjugate and its application as edible coating in postharvest preservation of peach fruit. Postharvest Biology and Technology, 154, 129–136. DOI: https://doi.org/10.1016/j. postharvbio.2019.05.003.

  25. Jiménez-Zurita, J. O., Balois-Morales, R., Alia-Tejacal, I., Sánchez-Herrera, L. M., Jiménez-Ruiz, E. I., Bello-Lara, J. E., García-Paredes, J. D. & Juárez-López, P. (2017). Cold Storage of Two Selections of Soursop (Annona muricata L.) in Nayarit, Mexico. Journal of Food Quality, 1-9. DOI: https://doi.org/10.1155/2017/4517469.

  26. Karim, H., Boubaker, H., Askarne, L., Talibi, I., Msanda, F., Saadi, B., Ait, A. & Aoumar, B. (2015). Antifungal properties of organic extracts of eight Cistus L. species against postharvest citrus sour rot. Letters in Applied Microbiology, 62, 16–22. DOI: https://doi.org/10.1016/j. micpath.2017.01.041.

  27. Khalifa, I., Barakat, H., El-Mansy, H. A. & Soliman, S. A. (2017). Preserving apple (Malus domestica var. Anna) fruit bioactive substances using olive wastes extractchitosan film coating. Information Processing in Agriculture. 4, 90-99. DOI: 10.1016/j. inpa.2016.11.001.

  28. Lagrouh, F., Dakka, N. & Bakri, Y. (2017). The antifungal activity of Moroccan plants and the mechanism of action of secondary metabolites from plants. Journal de Mycologie Medicale, 27, 303-311. DOI: 10.1016/j. mycmed.2017.04.008.

  29. Manenji, B. T., Mudyiwa, R. M., Midzi, J. & Tsodzo, A. (2017). Antifungal effects of botanical leaf extracts of Lantana camara, Moringa oleifera, and Tagetes minuta on Rhizopus stolonifer in vitro. Journal of Agruculture and Ecology Research International, 11,1-8.DOI: https:// doi.org/10.9734/JAERI/2017/28371.

  30. Martínez, G., Regente, M., Jacobi, S., Del Rio, M., Pinedo, M. & Del Canal, L. (2017). Chlorogenic acid is a fungicide active against phytopathogenic fungi. Pesticide Biochemistry and Physiology, 140, 30–35. DOI: https:// doi.org/10.1016/j.pestbp.2017.05.012.

  31. Masih, H., Peter, J. K. & Tripathi, P. A. (2014). Comparative evaluation of antifungal activity of medicinal plant extracts and chemical fungicides against four plant pathogens. International Journal of Current Microbiology and Applied Sciences, 3, 97-109. Disponible en: https:// www.ijcmas.com/vol-3-5/Harison%20Masih,%20et%20 al.pdf.

  32. Medda, S., Hajra, A., Dey, U., Bose, P. & Mondal, N. K. (2014). Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp . and Aspergillus sp. Applied Nanoscience, 5, 875–880. DOI: https://doi.org/10.1007/ s13204-014-0387-1.

  33. Mishra, S., Ahmad, S., Kumar, N. & Sharma, B.K. (2013). Annona muricata (the cancer killer): A review. Global Journal Pharmacy, 2, 1613–1618. Válido en: https:// www.yumpu.com/en/document/view/14436104/annonamuricata- the-cancer-killer-a-review.

  34. Mohamed, M. S. M., Saleh, A. M., Abdel-Farid, I. & El-Naggar, S. A. (2016). Growth, hydrolases and ultrastructure of Fusarium oxysporum as affected by phenolic rich extracts from several xerophytic plants. Pesticide Biochemistry and Physiology, 141, 57–64. DOI: 10.1016/j.pestbp.2016.11.007.

  35. Muzzalupo, I., Badolati, G., Chiappetta, A., Picci, N. & Muzzalupo, R. (2020). In vitro Antifungal Activity of Olive (Olea europaea) Leaf Extracts Loaded in Chitosan Nanoparticles. Frontiers in Bioengineering and Biotechnology, 8, 1-10. DOI: 10.3389/ fbioe.2020.00151.

  36. Nallamuthu, I., Devi, A. & Khanum, F. (2015). Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian Journal of Pharmaceutical Sciences, 10, 203-211. DOI: http:// dx.doi.org/10.1016/j. ajps.2014.09.005.

  37. Niaounakis, M. 2014. Manufacture of biocomposites, En Niaounakis, M. (Ed.). Biopolymers: Processing and Products. (pp. 411-431) New York: Elsevier. DOI: http:// dx.doi.org/10.1016/B978-0-323-26698-7.00012-X.

  38. Nikkhah, M. Hashemi, M., Habibi, M. & Farhoosh, R. (2017). Synergistic effects of some essential oils against fungal spoilage on pear fruit. International Journal of Food Microbiology, 257, 285-294. DOI: 10.1016/j. ijfoodmicro.2017.06.021.

  39. Ochoa-Velasco, C. E., Navarro-Cruz, A., Vera-López, O., Palou, E. & Avila-Sosa. R. (2017). Growth modeling to control (in vitro) Fusarium verticillioides and Rhizopus stolonifer with thymol and carvacrol. Revista Argentina de Microbiología, 50, 70-74. DOI: http://dx.doi. org/10.1016/j.ram.2016.11.010 0.

  40. Pagliarulo, C., Sansone, F., Moccia, S., Russo, G. L., Aquino, R. P., Salvatore, P., Stasio, M. D. & Volpe, M. G. (2015). Preservation of strawberries with an antifungal edible coating using peony extracts in chitosan. Food and Bioprocess Technology, 9, 1951-1960. DOI: 10.1007/ s11947-016-1779-x.

  41. Peña, A., Sánchez, N. S. & Calahorra, M. (2013). Effects of chitosan on Candida albicans: conditions for its antifungal activity. BioMed Research International, 2013, 1-15. DOI: 10.1155/2013/527549.

  42. Petrasch, S., Silva, C. J., Mesquida-Pesci, S. D., Gallegos, K., van den-Abeele, C., Papin V., Fernandez-Acero, F. J., Knapp S. J. & Blanco-Ulate, B. (2019). Infection strategies deployed by Botrytis cinerea, Fusarium acuminatum, and Rhizopus stolonifer as a function of tomato fruit ripening stage. Frontiers in Plant Science, 10, 1-24. DOI: 10.3389/ fpls.2019.00223.

  43. Pitt, J. I. & Hocking, A. D. (2009). Zygomycetes. En Pitt, J. I. (Ed.) Fungi and Food Spoilage. (pp.145-168). Boston: Springer. DOI: https://doi.org/10.1007/978-0-387- 92207-2_6.

  44. Ramos-Guerrero, A., González-Estrada, R. R., Hanako-Rosas, G., Bautista-Baños, S., Acevedo-Hernández, G., Tiznado- Hernández, M. E. & Gutiérrez-Martínez, P. (2018). Use of inductors in the control of Colletotrichum gloeosporioides and Rhizopus stolonifer isolated from soursop fruits: in vitro tests. Food Science and Biotechnology, 27, 755– 763. https://doi.org/10.1007/s10068-018-0305-5.

  45. Ribeiro-da Silva, L. M., Teixeira-de Figueiredo, E. A., Silva-Ricardo, N. M. P., Pinto-Vieira, I. G., Wilanede Figueiredo, R., Montenegro-Brasil, I. & Gomez, C. L. (2014). Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chemistry, 143, 398–404. DOI: 10.1016/j. foodchem.2013.08.001.

  46. Romanazzi, G., Feliziani, E. & Sivakumar, D. (2018). Chitosan, a biopolymer with triple action on postharvest decay of fruit and vegetables: Eliciting, antimicrobial and film-forming properties. Frontiers in Microbiology, 9, 27- 45. DOI: 10.3389/fmicb.2018.02745.

  47. Sabaghi, M., Maghsoudlou, Y., Khomeiri, M. & Ziaiifar, A.M. (2015). Active edible coating from chitosan incorporating green tea extract as an antioxidant and antifungal on fresh walnut kernel. Postharvest Biology and Technology, 110, 224-228. DOI: 10.1016/j. postharvbio.2015.08.025.

  48. Sardella, D., Gatt, R. & Valdramidis, V. P. (2018). Modelling the growth of pear postharvest fungal isolates at different temperatures. Food Microbiology, 76, 450–456. https:// doi.org/10.1016/j.fm.2018.07.010

  49. Shreya, M., Hajra, A., Dey, U., Bose, P. & Mondal, N. (2014). Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp. Applied Nanoscience, 5, 875-880. DOI: 10.1007/s13204-014-0387-1.

  50. SIAP. (2019). Cierre de la producción agrícola por estado. Anuario Estadístico de la Producción Agrícola de guanábana en México. Disponible en: https://nube.siap. gob.mx/cierreagricola/. Consultado: 29 de noviembre del 2020.

  51. Singh, D. & Sharma, R. R. (2018). Postharvest diseases of fruits and vegetables and their management. En Mohammed, W. S. (Ed.). Postharvest Disinfection of Fruits and Vegetables. Academic Press, (pp. 1–52) New York: Elsevier. DOI:10.31018/jans.v11i2.2053.

  52. Siripatrawan, U. & Harte, B. R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food hydrocolloids, 24, 770–775. https://doi.org/10.1016/j. foodhyd.2010.04.003.

  53. Suwanamornlert, P., Sangchote, S., Chinsirikul, W., Sane, A. & Chonhenchob, V. (2018). Antifungal activity of plant-derived compounds and their synergism against major postharvest pathogens of longan fruit in vitro. International Journal of Food Microbiology, 257, 285– 294. https://doi.org/10.1016/j.ijfoodmicro.2018.02.009.

  54. Woranuch, S., Yoksan, R. & Akashi, M. (2014). Ferulic acidcoupled chitosan: Thermal stability and utilization as an antioxidant for biodegradable active packaging film. Carbohydrate Polymers, 115, 744–751. DOI: https://doi. org/10.1016/j.ijfoodmicro.2018.02.009.

  55. Xie, M., Hu, B., Wang, Y. & Zeng, X. (2014). Grafting of gallic acid onto chitosan enhances antioxidant activities. Journal of Agricultural and Food Chemistry, 62, 9128- 9136. DOI: 10.1021/jf503207s.

  56. Xing, K., Li, T. J., Liu, Y. F., Zhang, J., Zhang, Y., Shen, X.Q., Li, X.Y., Miao, X. M., Feng, Z. Z., Peng, X., Li, Z.Y. & Qin, S. (2018). Antifungal and eliciting properties of chitosan against Ceratocystis fimbriata in sweet potato. Food Chemistry, 268, 188–195. DOI: 10.1016/j. foodchem.2018.06.088.

  57. Yang, X. & Jiang, X. (2015). Antifungal activity and mechanism of tea polyphenols against Rhizopus stolonifer. Biotechnology Letters, 37, 1463-1472. doi:10.1007/ s10529-015-1820-6.

  58. Zaker, M. (2016). Natural plant products as eco-friendly fungicides for plant diseases control- a review. The Agriculturists, 14, 134-141. DOI: 10.3329/agric.v14i1.29111.

  59. Zhang, W., Zhao, H., Zhang, J., Sheng, Z., Cao, J. & Jiang, W. (2019). Different molecular weights chitosan coatings delay the senescence of postharvest nectarine fruit in relation to changes of redox state and respiratory pathway metabolism. Food Chemistry, 289, 160-168. DOI: https:// doi.org/10.1016/j.foodchem.2019.03.047.

  60. Zorofchian, M. S., Fadaeinasab, M., Nikzad, S., Mohan, G., Mohd, A. H. & Kadir, H. A. (2015). Annona muricata (Annonaceae): A review of its traditional uses, isolated acetogenins and biological Activities. Internatioal Journal of Molecular Sciences, 16, 15625-15658. DOI:10.3390/ ijms160715625.




Figure 1

2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2021;24