medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2021, Número 1

Siguiente >>

TIP Rev Esp Cienc Quim Biol 2021; 24 (1)


Evaluación de quitosano comercial y extractos acuosos de mesocarpio de coco (Cocos nucifera L.) para el control de Rhizopus stolonifer aislado de guanábana (Annona muricata L.): Pruebas in vitro

Cortés-Rivera HJ, González-Estrada RR, Huerta-Ocampo JÁ, Blancas-Benítez FJ, Gutiérrez-Martínez P
Texto completo Cómo citar este artículo Artículos similares

Idioma: Español
Referencias bibliográficas: 60
Paginas:
Archivo PDF: 302.67 Kb.


PALABRAS CLAVE

biopolímero, mesocarpio, Cocos nucifera, fitopatógeno, antifúngico.

RESUMEN

La eficacia antifúngica de los extractos acuosos de mesocarpio de coco (Cocos nucifera L.) (EAC) y el quitosano comercial (QC) aplicados de manera individual y en combinación se evaluó contra Rhizopus stolonifer en términos de crecimiento micelial, esporulación y germinación de las esporas, así como la obtención de los modelos de crecimiento primario en dos temperaturas de almacenamiento (15-25 ºC). La aplicación de los EAC al 10% redujo significativamente el crecimiento micelial de R. stolonifer (58.81 ± 6.48%); por otro lado, el QC (1.5%) mostró un efecto de control de hasta un 87%, sin embargo, la combinación de los EAC (10%) con el QC (1.5%) fue más efectiva al reducir el crecimiento micelial › 93 %). Todos los tratamientos fueron efectivos para disminuir la producción de esporas (› 94 %) en comparación con el control (agar). El QC al combinarse con los EAC fue más efectivo inhibiendo la elongación del tubo germinal (› 98 %) comparado con los tratamientos individuales (‹ 48 %). El modelo modificado de Gompertz mostró un ajuste adecuado para ambos rangos de temperatura (› 98-99 %) observándose diferencias significativas (p ≤ 0.05) entre las variables de velocidad máxima (Vmáx) y periodo de latencia (ƛ), no obstante, todos los tratamientos mostraron un efecto fungistático sobre el desarrollo micelial de R. stolonifer. La combinación de los EAC y el QC puede ser una alternativa eco-amigable contra la pudrición suave de los frutos de guanábana.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Aguilar-Méndez, M. A., Campos-Arias, M. P., Quiroz-Reyes, C. N. & Ronquillo-de Jesús M. A. (2019). Fruit peels as sources of bioactive compounds with antioxidant and antimicrobial properties. Rev. FCA UNCUYO, 50, 112. Válido en: http://revistas.uncu.edu.ar/ojs/index.php/ RFCA/article/view/2945/2103.

  2. Aqil, F., Zahin, M., Ahmad, I., Owais, M., Khan, M. S. A., Bansal, S. S. & Farooq, S. (2010). Antifungal Activity of Medicinal Plant Extracts and Phytocompounds: A Review. In: Ahmad, I. (Ed.) Combating Fungal Infections. (pp. 449–484) Berlin: Springer. DOI: 10.1007/978-3-642- 12173-9_19

  3. Bajic, M., Rocnik, T., Oberlintner, A., Scognamiglio, F., Novak, U. & Likozar, B. (2019). Natural plant extracts as active components in chitosan-based films: A comparative study. Food Packaging and Shelf Life, 21, 1-8. DOI: https://doi.org/10.1016/j.fpsl.2019.100365.

  4. Bautista-Baños, S., Hernández-López, M., Díaz-Pérez, J. C. & Cano-Ochoa, C. F. (2000). Evaluation of the fungicidal properties of plant extracts to reduce Rhizopus stolonifer of “ciruela” fruit (Spondias purpurea L.) during storage. Postharvest Biology and Technology, 20, 99–106. DOI: https://doi.org/10.1016/ S0925-5214(00)00109-5.

  5. Bautista-Baños, S., Hernández-López, M. & Bosquez- Molina, E. (2004). Growth inhibition of selected fungi by chitosan and plant extracts. Revista Mexicana de Fitopatología, 22, 178–185. https://www.redalyc.org/ pdf/612/61222204.pdf.

  6. Bautista-Baños, S., Ventura-Aguilar, R. I., Correa-Pacheco, Z. & Corona-Rangel, M. L. (2017). Chitosan: a versatile antimicrobial polysaccharide for fruit and vegetables in postharvest – a review. Revista Chapingo Serie Horticultura, 23, 103-121. DOI: http://dx.doi. org/10.5154/r.rchsh.2016.11.030.

  7. Betchem, G., Nana A. N. & Wang, Y. (2019). The application of chitosan in the control of post ‑ harvest diseases: a review. Journal of Plant Diseases and Protection, 126, 495–507. DOI: https://doi.org/10.1007/s41348-019- 00248-2.

  8. Berumen-Varela, G., Hernández-Oñate, M. A. & Tiznado- Hernández, M. E. (2019). Utilization of biotechnological tools in soursop (Annona muricata L.). Scientia Horticulturae, 245, 269-273. DOI: https://doi. org/10.1016/j.scienta.2018.10.028.

  9. Bhagwat, M. K. & Datar, A. G. (2014). Antifungal activity of herbal extracts against plant pathogenic fungi. Archives of Phytopathology and Plant Protection, 47, 959-965. DOI: https://doi.org/10.1080/03235408.2013.826857

  10. Cerqueira, M. D., Barcellos, H., Machado, P., Aires, J. & Dummer, D. (2015). Antifungal activity of plant extracts with potential to control plant pathogens in pineapple Diana. Asian Pacific Journal of Tropical Biomedicine, 1, 26–31. DOI: https://doi.org/10.1016/j. apjtb.2015.09.026.

  11. Corato, U., Salimbeni, R., De Pretis, A., Avella, N. & Patruno, G. (2017). Antifungal activity of crude extracts from brown and red seaweeds by a supercritical carbon dioxide technique against fruit postharvest fungal diseases. Postharvest Biology and Technology, 131, 16–30. DOI: https://doi.org/10.1016/j.postharvbio.2017.04.011.

  12. Cortés-Rivera, H. J., González-Estrada, R. R. & Blancas- Benitez, F. J. (2019a). Extracción e identificación de compuestos bioactivos presentes en residuos de coco (Cocos nucifera) mesocarpio y exocarpio, y su potencial antifúngico. Tecnológico Nacional de México/Instituto Tecnológico de Tepic. pp: 1-65.

  13. Cortés-Rivera, H. J., Blancas-Benítez, F. J., Romero-Islas, L. C., Gutiérrez-Martínez, P. & González-Estrada, R. R. (2019b). In vitro evaluation of residues of coconut (Cocos nucifera L.) aqueous extracts, against the fungus Penicillium italicum. Emirates Journal of Food and Agriculture, 31, 613–617. DOI: 0.9755/ejfa.2019.v31. i8.1993.

  14. Dey, G., Chakraborty, M. & Mitra, A. (2005). Profiling C6- C3and C6-C1phenolic metabolites in Cocos nucifera. Journal of Plant Physiology, 162, 375–381. DOI: 10.1016/j.jplph.2004.08.006.

  15. Duran, M., Aday, M. S., Zorba, N. N. D., Temizkan, R., Büyükcan, M. B. & Caner, C. (2016). Potential of antimicrobial active packaging “containing natamycin, nisin, pomegranate and grape seed extract in chitosan coating” to extend shelf life of fresh strawberry. Food and Bioproducts Processing, 98, 354–363. DOI: 10.1016/j. fbp.2016.01.007.

  16. Feliziani, E., Romanazzi, G., Margosan, D. A., Mansour, M. F., Smilanick, J. L., Gu, S., Gohil, H. L. & Rubio-Ames, Z. (2013). Preharvest fungicide, potassium sorbate, or chitosan use on quality and storage decay of table grapes. Plant Disease, 97, 307–314. DOI: http://dx.doi. org/10.1094/ PDIS-12-11-1043-RE.

  17. Fiore, A. & Cigic, V. V. (2019). Bioactive compounds from food byproducts. Journal of Food Quality, 2019, 1–2. DOI: https://doi.org/10.1155/2019/6213792.

  18. García-Rincón, J., Vega-Pérez, J., Guerra-Sánchez, M. G., Hernández-Lauzardo, A. N., Peña-Díaz, A. & Velázquez del Valle, M. G. (2010). Effect of chitosan on growth and plasma membrane properties of Rhizopus stolonifer (Ehrenb.: Fr.) Vuill. Pesticide Biochemistry and Physiology, 97, 275–278. DOI: 10.1016/j. pestbp.2010.03.008.

  19. Ghaouth, A. E., Arul, J., Asselin, A. & Benhamou, N. (1992). Antifungal activity of chitosan on post-harvest pathogens: induction of morphological and cytological alterations in Rhizopus stolonifer. Mycological Research, 96, 769-779. DOI: https://doi.org/10.1016/ S0953-7562(09)80447-4.

  20. González-Estrada, R. R., Vega-Arreguín, J., Robles- Villanueva, B. A., Velázquez-Estrada, R. M., Ramos- Guerrero, A. & Gutiérrez-Martínez, P. (2020). Evaluación in vitro de productos químicos no convencionales para el control de Penicillium citrinum. Polibotánica, 49, 161- 172. DOI: 10.18387/polibotanica.49.11.

  21. Gutiérrez-Martinez, P., Ledezma-Morales, A., Romero-Islas, L. C., Ramos-Guerrero, A., Romero-Islas, J., Rodríguez- Pereida, C., Casas-Junco, P., Coronado-Partida, L. & González-Estrada, R. R. (2018). Antifungal activity of chitosan against postharvest fungi of tropical and subtropical fruits. In: Dongre, R. S. (Ed.) Chitin-Chitosan - Myriad Functionalities in Science and Technology. (pp. 311-322) London: IntechOpen. DOI: 10.5772/ intechopen.76095.

  22. Hee-Soo, P. & Jae-Hyuk, Y. (2012) Genetic control of asexual sporulation in filamentous fungi. Current Opinion in Microbiology. 15, 669-677. DOI: https://doi. org/10.1016/j.mib.2012.09.006.

  23. Hernández-Lauzardo, A. N., Bautista-Baños, S., Velázquezdel Valle, M. G., Méndez-Montealvo, M. G., Sánchez- Rivera, M. M. & Bello-Pérez, L. A. (2008). Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifer (Ehrenb.:Fr.) Vuill. Carbohydrate Polymers, 73, 541–547. DOI: 10.1016/j.carbpol.2007.12.020.

  24. Jiao, W., Chu, S., Li, X., Cao, J., Fan, X. & Jiang, W. (2019). Preparation of a chitosan-chlorogenic acid conjugate and its application as edible coating in postharvest preservation of peach fruit. Postharvest Biology and Technology, 154, 129–136. DOI: https://doi.org/10.1016/j. postharvbio.2019.05.003.

  25. Jiménez-Zurita, J. O., Balois-Morales, R., Alia-Tejacal, I., Sánchez-Herrera, L. M., Jiménez-Ruiz, E. I., Bello-Lara, J. E., García-Paredes, J. D. & Juárez-López, P. (2017). Cold Storage of Two Selections of Soursop (Annona muricata L.) in Nayarit, Mexico. Journal of Food Quality, 1-9. DOI: https://doi.org/10.1155/2017/4517469.

  26. Karim, H., Boubaker, H., Askarne, L., Talibi, I., Msanda, F., Saadi, B., Ait, A. & Aoumar, B. (2015). Antifungal properties of organic extracts of eight Cistus L. species against postharvest citrus sour rot. Letters in Applied Microbiology, 62, 16–22. DOI: https://doi.org/10.1016/j. micpath.2017.01.041.

  27. Khalifa, I., Barakat, H., El-Mansy, H. A. & Soliman, S. A. (2017). Preserving apple (Malus domestica var. Anna) fruit bioactive substances using olive wastes extractchitosan film coating. Information Processing in Agriculture. 4, 90-99. DOI: 10.1016/j. inpa.2016.11.001.

  28. Lagrouh, F., Dakka, N. & Bakri, Y. (2017). The antifungal activity of Moroccan plants and the mechanism of action of secondary metabolites from plants. Journal de Mycologie Medicale, 27, 303-311. DOI: 10.1016/j. mycmed.2017.04.008.

  29. Manenji, B. T., Mudyiwa, R. M., Midzi, J. & Tsodzo, A. (2017). Antifungal effects of botanical leaf extracts of Lantana camara, Moringa oleifera, and Tagetes minuta on Rhizopus stolonifer in vitro. Journal of Agruculture and Ecology Research International, 11,1-8.DOI: https:// doi.org/10.9734/JAERI/2017/28371.

  30. Martínez, G., Regente, M., Jacobi, S., Del Rio, M., Pinedo, M. & Del Canal, L. (2017). Chlorogenic acid is a fungicide active against phytopathogenic fungi. Pesticide Biochemistry and Physiology, 140, 30–35. DOI: https:// doi.org/10.1016/j.pestbp.2017.05.012.

  31. Masih, H., Peter, J. K. & Tripathi, P. A. (2014). Comparative evaluation of antifungal activity of medicinal plant extracts and chemical fungicides against four plant pathogens. International Journal of Current Microbiology and Applied Sciences, 3, 97-109. Disponible en: https:// www.ijcmas.com/vol-3-5/Harison%20Masih,%20et%20 al.pdf.

  32. Medda, S., Hajra, A., Dey, U., Bose, P. & Mondal, N. K. (2014). Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp . and Aspergillus sp. Applied Nanoscience, 5, 875–880. DOI: https://doi.org/10.1007/ s13204-014-0387-1.

  33. Mishra, S., Ahmad, S., Kumar, N. & Sharma, B.K. (2013). Annona muricata (the cancer killer): A review. Global Journal Pharmacy, 2, 1613–1618. Válido en: https:// www.yumpu.com/en/document/view/14436104/annonamuricata- the-cancer-killer-a-review.

  34. Mohamed, M. S. M., Saleh, A. M., Abdel-Farid, I. & El-Naggar, S. A. (2016). Growth, hydrolases and ultrastructure of Fusarium oxysporum as affected by phenolic rich extracts from several xerophytic plants. Pesticide Biochemistry and Physiology, 141, 57–64. DOI: 10.1016/j.pestbp.2016.11.007.

  35. Muzzalupo, I., Badolati, G., Chiappetta, A., Picci, N. & Muzzalupo, R. (2020). In vitro Antifungal Activity of Olive (Olea europaea) Leaf Extracts Loaded in Chitosan Nanoparticles. Frontiers in Bioengineering and Biotechnology, 8, 1-10. DOI: 10.3389/ fbioe.2020.00151.

  36. Nallamuthu, I., Devi, A. & Khanum, F. (2015). Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian Journal of Pharmaceutical Sciences, 10, 203-211. DOI: http:// dx.doi.org/10.1016/j. ajps.2014.09.005.

  37. Niaounakis, M. 2014. Manufacture of biocomposites, En Niaounakis, M. (Ed.). Biopolymers: Processing and Products. (pp. 411-431) New York: Elsevier. DOI: http:// dx.doi.org/10.1016/B978-0-323-26698-7.00012-X.

  38. Nikkhah, M. Hashemi, M., Habibi, M. & Farhoosh, R. (2017). Synergistic effects of some essential oils against fungal spoilage on pear fruit. International Journal of Food Microbiology, 257, 285-294. DOI: 10.1016/j. ijfoodmicro.2017.06.021.

  39. Ochoa-Velasco, C. E., Navarro-Cruz, A., Vera-López, O., Palou, E. & Avila-Sosa. R. (2017). Growth modeling to control (in vitro) Fusarium verticillioides and Rhizopus stolonifer with thymol and carvacrol. Revista Argentina de Microbiología, 50, 70-74. DOI: http://dx.doi. org/10.1016/j.ram.2016.11.010 0.

  40. Pagliarulo, C., Sansone, F., Moccia, S., Russo, G. L., Aquino, R. P., Salvatore, P., Stasio, M. D. & Volpe, M. G. (2015). Preservation of strawberries with an antifungal edible coating using peony extracts in chitosan. Food and Bioprocess Technology, 9, 1951-1960. DOI: 10.1007/ s11947-016-1779-x.

  41. Peña, A., Sánchez, N. S. & Calahorra, M. (2013). Effects of chitosan on Candida albicans: conditions for its antifungal activity. BioMed Research International, 2013, 1-15. DOI: 10.1155/2013/527549.

  42. Petrasch, S., Silva, C. J., Mesquida-Pesci, S. D., Gallegos, K., van den-Abeele, C., Papin V., Fernandez-Acero, F. J., Knapp S. J. & Blanco-Ulate, B. (2019). Infection strategies deployed by Botrytis cinerea, Fusarium acuminatum, and Rhizopus stolonifer as a function of tomato fruit ripening stage. Frontiers in Plant Science, 10, 1-24. DOI: 10.3389/ fpls.2019.00223.

  43. Pitt, J. I. & Hocking, A. D. (2009). Zygomycetes. En Pitt, J. I. (Ed.) Fungi and Food Spoilage. (pp.145-168). Boston: Springer. DOI: https://doi.org/10.1007/978-0-387- 92207-2_6.

  44. Ramos-Guerrero, A., González-Estrada, R. R., Hanako-Rosas, G., Bautista-Baños, S., Acevedo-Hernández, G., Tiznado- Hernández, M. E. & Gutiérrez-Martínez, P. (2018). Use of inductors in the control of Colletotrichum gloeosporioides and Rhizopus stolonifer isolated from soursop fruits: in vitro tests. Food Science and Biotechnology, 27, 755– 763. https://doi.org/10.1007/s10068-018-0305-5.

  45. Ribeiro-da Silva, L. M., Teixeira-de Figueiredo, E. A., Silva-Ricardo, N. M. P., Pinto-Vieira, I. G., Wilanede Figueiredo, R., Montenegro-Brasil, I. & Gomez, C. L. (2014). Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chemistry, 143, 398–404. DOI: 10.1016/j. foodchem.2013.08.001.

  46. Romanazzi, G., Feliziani, E. & Sivakumar, D. (2018). Chitosan, a biopolymer with triple action on postharvest decay of fruit and vegetables: Eliciting, antimicrobial and film-forming properties. Frontiers in Microbiology, 9, 27- 45. DOI: 10.3389/fmicb.2018.02745.

  47. Sabaghi, M., Maghsoudlou, Y., Khomeiri, M. & Ziaiifar, A.M. (2015). Active edible coating from chitosan incorporating green tea extract as an antioxidant and antifungal on fresh walnut kernel. Postharvest Biology and Technology, 110, 224-228. DOI: 10.1016/j. postharvbio.2015.08.025.

  48. Sardella, D., Gatt, R. & Valdramidis, V. P. (2018). Modelling the growth of pear postharvest fungal isolates at different temperatures. Food Microbiology, 76, 450–456. https:// doi.org/10.1016/j.fm.2018.07.010

  49. Shreya, M., Hajra, A., Dey, U., Bose, P. & Mondal, N. (2014). Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp. Applied Nanoscience, 5, 875-880. DOI: 10.1007/s13204-014-0387-1.

  50. SIAP. (2019). Cierre de la producción agrícola por estado. Anuario Estadístico de la Producción Agrícola de guanábana en México. Disponible en: https://nube.siap. gob.mx/cierreagricola/. Consultado: 29 de noviembre del 2020.

  51. Singh, D. & Sharma, R. R. (2018). Postharvest diseases of fruits and vegetables and their management. En Mohammed, W. S. (Ed.). Postharvest Disinfection of Fruits and Vegetables. Academic Press, (pp. 1–52) New York: Elsevier. DOI:10.31018/jans.v11i2.2053.

  52. Siripatrawan, U. & Harte, B. R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food hydrocolloids, 24, 770–775. https://doi.org/10.1016/j. foodhyd.2010.04.003.

  53. Suwanamornlert, P., Sangchote, S., Chinsirikul, W., Sane, A. & Chonhenchob, V. (2018). Antifungal activity of plant-derived compounds and their synergism against major postharvest pathogens of longan fruit in vitro. International Journal of Food Microbiology, 257, 285– 294. https://doi.org/10.1016/j.ijfoodmicro.2018.02.009.

  54. Woranuch, S., Yoksan, R. & Akashi, M. (2014). Ferulic acidcoupled chitosan: Thermal stability and utilization as an antioxidant for biodegradable active packaging film. Carbohydrate Polymers, 115, 744–751. DOI: https://doi. org/10.1016/j.ijfoodmicro.2018.02.009.

  55. Xie, M., Hu, B., Wang, Y. & Zeng, X. (2014). Grafting of gallic acid onto chitosan enhances antioxidant activities. Journal of Agricultural and Food Chemistry, 62, 9128- 9136. DOI: 10.1021/jf503207s.

  56. Xing, K., Li, T. J., Liu, Y. F., Zhang, J., Zhang, Y., Shen, X.Q., Li, X.Y., Miao, X. M., Feng, Z. Z., Peng, X., Li, Z.Y. & Qin, S. (2018). Antifungal and eliciting properties of chitosan against Ceratocystis fimbriata in sweet potato. Food Chemistry, 268, 188–195. DOI: 10.1016/j. foodchem.2018.06.088.

  57. Yang, X. & Jiang, X. (2015). Antifungal activity and mechanism of tea polyphenols against Rhizopus stolonifer. Biotechnology Letters, 37, 1463-1472. doi:10.1007/ s10529-015-1820-6.

  58. Zaker, M. (2016). Natural plant products as eco-friendly fungicides for plant diseases control- a review. The Agriculturists, 14, 134-141. DOI: 10.3329/agric.v14i1.29111.

  59. Zhang, W., Zhao, H., Zhang, J., Sheng, Z., Cao, J. & Jiang, W. (2019). Different molecular weights chitosan coatings delay the senescence of postharvest nectarine fruit in relation to changes of redox state and respiratory pathway metabolism. Food Chemistry, 289, 160-168. DOI: https:// doi.org/10.1016/j.foodchem.2019.03.047.

  60. Zorofchian, M. S., Fadaeinasab, M., Nikzad, S., Mohan, G., Mohd, A. H. & Kadir, H. A. (2015). Annona muricata (Annonaceae): A review of its traditional uses, isolated acetogenins and biological Activities. Internatioal Journal of Molecular Sciences, 16, 15625-15658. DOI:10.3390/ ijms160715625.




Figura 1

2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2021;24

ARTíCULOS SIMILARES

CARGANDO ...