medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2021, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2021; 24 (1)

Bioencapsulation Fischerella sp.: growth, metabolism and inoculum concentration

Alonso-Santos E, Trujillo-Tapia MN, Cervantes-Hernández P, Ramírez-Fuentes E
Full text How to cite this article

Language: Spanish
References: 43
Page:
PDF size: 294.58 Kb.


Key words:

alginate, biofertilizer, cyanobacteria, cell immobilization.

ABSTRACT

Immobilized microorganisms and their use in agriculture as biofertilizers or for biocontrol, is a developing topic; and the concentration of inoculum for bioencapsulation, without affecting the growth and production of metabolites by the microorganism, is an important aspect to consider. Fischerella sp. cells they were encapsulated with calcium alginate using different percentages of inoculum (1, 5, 10 and 20%), and dry weight, NH4+ and phycobiliproteins concentration in biomass were determined. Growth and metabolism of Fischerella sp. was higher in bioencapsulated vs free cells. Dry weight and NH4+ of Fischerella sp. was increased 2.8 times more in bioencapsulated vs free cells. Dry weight value was 0.032 µg mL-1 with the concentration of 20% inoculum, and statistically showed significant differences. Unlike free cells, bioencapsulation protects cells from biotic and abiotic stress, maintaining metabolic activity and viability for longer periods of time. Bioencapsulated from Fischerella sp. to produce NH4+ and its use as a biofertilizer in agriculture, is an alternative versus use of chemical fertilizers.


REFERENCES

  1. Andersen, R. A. & Kawachi, M. (2005). Traditional microalgae isolation techniques. In: Andersen, R. A. (Ed). Algal Culturing Techniques. (pp. 83-100). Elsevier Academic Press. E.U.

  2. APHA-AWA-WPCF (1992). Standard methods for the examination of water and wastewater. 18th edition. American Public Health Association. Washington, D. C., USA.

  3. Arredondo-Vega, B., Cordero-Esquivel, B. & Voltolina, D. (2017). Determinación de proteínas por métodos espectrofotométricos. Métodos y herramientas analíticas en la evaluación de la biomasa microalgal. Centro de Investigaciones Biológicas del Noroeste. 2da Ed. Capítulo

  4. 31- 34 pp. 4. Bashan, Y. (1986). Alginate beds as synthetic inoculant carriers for slow release of bacteria that affect plant growth. Applied Environmental Microbiology, 51, 1089-1098. DOI: 10.1128/ aem.51.5.1089-1098.1986

  5. Bashan, Y. & González, L. E. (1999). Long-term survival of the plant-growth promoting bacteria Azospirillum brasilense and Pseudomonas fluorescens in dry alginate inoculant. Applied Microbiology and Biotechnology, 51, 262-266. https://doi.org/10.1007/s002530051391

  6. Bashan, Y., Salazar B. & Puente, M. E. (2009). Responses of native legume desert trees used for reforestation in the Sonoran Desert to plant growth-promoting microorganisms in screen house. Biology and Fertility of Soils, 45, 655-662. DOI:10.1007/s00374-009-0368-9

  7. Brouers, M. & Hall, D. O. (1986). Ammonia and hydrogen production by immobilized cyanobacteria. Journal of Biotechnology, 3, 307-321. https://doi.org/10.1016/0168- 1656(86)90012-X

  8. Cortez, S., Nicolau, A., Flickinger, M. C. & Mota, M. (2017). Biocoatings: A new challenge for environmental biotecnology. Biochemical Engineering Journal, 121, 25-37. DOI.org/10.1016/j.bej.2017.01.004

  9. Converti, A., Lodi, A., Del Borghi, A. & Solisio, C. (2006). Cultivation of Spirulina platensis in a combined airlifttubular reactor system. Biochemical Engineering Journal, 32, 13–18. DOI:10.1016/j.bej.2006.08.013

  10. De-Bashan, L. E. & Bashan, Y. (2010). Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresource Technology, 101, 1611-1627. DOI: 10.1016/j. biortech.2009.09. 043.

  11. Duboís, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analysis of Chemistry, 26, 215–225.

  12. Gumbo, R., Ross, G. & Cloete, E. (2008). Biological control of Microcystis dominated harmful algal blooms. African Journal of Biotechnology, 7, 4765-4773. DOI: 10.5897/ AJB08.038

  13. Holt, J. G., Krieg, N. R., Sneath, P. H. A., Stanley, J. T. & Williams, S. T. (1994). Bergey’s Manual of Determinative Bacteriology. Williams and Wilkins. USA.

  14. Kovac, D., Babic, O., Milovanovic, I., Misan, A. & Simeunovic, J. (2017). The production of biomass and phycobiliprotein pigments in filamentous cyanobacteria: the impact of light and carbon sources. Applied Biochemistry and Microbiology, 53(5), 539-545. DOI:10.1134/S000368381705009X

  15. Miransari, M. (2010). Biological fertilization. In: Current Research and Education Topics in Applied Microbiology and Microbial Biotechnology (Méndez-Villa, A., Ed). 168-176 pp.

  16. Noreña-Caro, D. & Benton, M. G. (2018). Cyanobacteria as photoautotrophic biofactories of high-values chemicals. Journal of CO2 Utilization, 28, 335-366. https://doi. org/10.1016/j.jcou.2018.10.008

  17. Pagels, F., Guedes, A. C., Amaro, H. M., Kijjoa, A. & Vasconcelos, V. (2019). Phycobiliproteins from cyanobacteria: chemistry and biotechnological applications. Biotechnology Advances, 37, 422-443. DOI: 10.1016/j.biotechadv.2019.02.010

  18. Prasanna, R., Jaiswal, P. & Kaushik, B. D. (2008). Cyanobacteria as potential options for environmental sustainabilitypromises and challenges. Indian Journal of Microbiology, 48, 89-94. DOI: 10.1007/s12088-008-0009-2

  19. Rai, L. C. & Mallick, N. (1992). Removal and assessment of toxicity of Cu and Fe to Anabaena doliolum and Chlorella vulgaris using free and immobilized cells. World Journal of Microbiology and Biotechnology, 8, 110-114. DOI: 10.1007/BF01195827.

  20. Rathore, S., Desai, P.M., Liew, C.V., Chan, L.W. & Heng, P.W.S. (2013). Microencapsulation of microbial cells: Review. Journal of Food Engineering, 116, 369-381. https://doi. org/10.1016/j.jfoodeng.2012.12.022

  21. Rekha, P. D., Lai, W. A., Arun, A. B. & Young, C. C. (2007). Effect of free and encapsulated Pseudomonas putida CC FR2-4 and Bacillus subtilis CC-pg104 on plant growth under gnotobiotic conditions. Bioresource Technology, 98, 447-451. DOI: 10.1016/j.biortech.2006.01.009

  22. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology, 111, 1–61.

  23. Ruíz-Marín, A., Mendoza-Espinosa, L.G. & Stephenson, T. (2010). Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresource Technology, 101, 58-64. DOI: 10.1016/j.biortech.2009.02.076.

  24. Russo, A., Basaglia, M., Tola, E. & Casella, S. (2001). Survival, root colonization and biocontrol capacities of Pseudomonas fluorescens F113 LacZY in dry alginate microbeads. Journal of Industrial Microbiology and Biotechnology, 27, 337-342. DOI: 10.1038/sj.jim.7000154

  25. Santos-Rosa, F., Galván, F. & Vega, J. M. (1989). Photoproduction of ammonium by Chlamydomonas reinhardtii cells immobilized in barium alginate: A reactor feasibility study. Applied Microbiology and Biotechnology, 32, 285–290. https://doi.org/10.1007/BF00184975

  26. Schoebitz, M., López, D. M. & Roldan, A. (2013). Bioencapsulation of microbial inoculants for better soilplant fertilization. A review. Agronomy for Sustainable Development, 33, 751-765. DOI 10.1007/s13593-013- 0142-0

  27. Siegelman, H. W. & Kycia, J. H. (1978). Algal biliproteins. In Hellebust, J. A. & Craigie, J. S. Handbook of phycological methods. Physiological and biochemical methods. (pp. 71- 79). Cambridge university press, Cambridge.

  28. Singh, J. S., Pandey, V. C. & Singh, D. P. (2011). Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. Agriculture, Ecosystems & Environment, 140, 339-353. https://doi. org/10.1016/j.agee.2011.01.017

  29. Sukenik, A., Carmeli, Y. & Berner, T. (1989). Regulation of fatty acid composition by irradiance level in the Eustigmatophyte Nannochforopsis sp. Journal of Phycology, 25, 686-692. DOI: 10.1186/2045-3701-4-38

  30. Syiem, M. B. (2005). Entrapped cyanobacteria: Implications for biotechnology. Indian Journal of Biotechnology, 4, 209-215.

  31. Tam, N. F.Y. & Wong, Y. S. (2000). Effect of immobilized microalgal bead concentration on wastewater nutrient removal. Environmental Pollution, 107(1), 145-151. https:// doi.org/10.1016/S0269-7491(99)00118-9

  32. Taikhao, S. & Phunpruch, S. (2017). Increasing Hydrogen Production Efficiency of N2-Fixing Cyanobacterium Anabaena siamensis TISTR 8012 by Cell Immobilization. Energy Procedia, 138, 366-371. https://doi.org/10.1016/j. egypro.2017.10.170

  33. Trejo, A., de-Bashan, L. E., Hartmann, A., Hernandez, J. P., Rothballer, M., Schmid, M. & Bashan, Y. (2012). Recycling waste debris of immobilized microalgae and plant growth-promoting bacteria from wastewater treatment as a resource to improve fertility of eroded desert soil. Environ and Experimental Botany, 75, 65-73. DOI:10.1016/j. envexpbot.2011.08.007

  34. Trivedi, P. & Pandey, A. (2008). Recovery of plant growthpromoting rhizobacteria from sodium alginate beads after 3 years following storage at 4 degrees C. Journal of Industrial Microbiology and Biotechnology, 35(3), 205- 209. DOI:10.1007/s10295-007-0284-7

  35. Trujillo-Roldán, M. A. & Valdez-Cruz, N. A. (2006). El estrés hidrodinámico: Muerte y daño celular en cultivos agitados. Revista Latinoamericana de Microbiología, 48 (3-4),269-280

  36. Trujillo-Tapia, Ma. N. & Ramírez-Fuentes, E. (2016). Biofertilizer: an alternative to reduce chemical fertilizer in agriculture. Journal of Global Agriculture and Ecology, 4(2), 99-103. DOI:10.13140/RG.2.1.4935.4967

  37. Ugwu, C. U., Aoyagi, H. & Uchiyama, H. (2008). Photobioreactors for mass cultivation of algae. Bioresource Technology, 99, 4021-4028. DOI: 10.1016/j.biortech.2007.01.046

  38. Van Elsas, J. D., Trevors, J. T., Jain, D., Wolters, A. C., Heijnen, C. E. & van Overbeek, L. S. (1992). Survival of, and root colonization by, alginate-encapsulated Pseudomonas- cells following introduction into soil. Biology and Fertility of Soils, 14, 14-22. https://doi.org/10.1007/BF00336297

  39. Vemmer, M. & Patel, A.V. (2013). Review of encapsulation methods suitable for microbial biological control agents. Biological Control, 67, 380-389. https://doi.org/10.1016/j. biocontrol.2013.09.003

  40. Vroman, I. & Tighzert, L. (2009). Biodegradable Polymers. Biodegradability of Materials, 2, 307-344. https://doi. org/10.3390/ma2020307

  41. Wang, Ch. & Lan, Ch. Q. (2018). Effects of shear stress on microalgae – A review. Biotechnology Advances, 36, 986- 1002. DOI: 10.1016/j.biotechadv.2018.03.001

  42. Yabur, R., Bashan, Y. & Hernández-Carmona, G. (2007). Alginate from the macroalgae Sargasum sinicola as novel source for microbial immobilization material in wastewater treatment and plant growth promotion. Journal of Applied Phycology, 19, 43-53. https://doi.org/10.1007/s10811- 006-9109-8

  43. Young, C. C., Rekha, P. D., Lai, W. A. & Arun, A. B. (2006). Encapsulation of plant growth-promoting bacteria in alginate beads enriched with humic acid. Biotechnology and Bioengineering, 95, 76-83. DOI: 10.1002/bit.20957




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2021;24