medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2021, Número 1

<< Anterior Siguiente >>

TIP Rev Esp Cienc Quim Biol 2021; 24 (1)


Efecto del solvente de extracción sobre la composición química, propiedades fisicoquímicas y biológicas de extractos de hongos comestibles

Torres-Martínez BM, Vargas-Sánchez RD, Ibarra-Arias FJ, Ibarra-Torres EV, Torrescano-Urrutia GR, Sánchez-Escalante A
Texto completo Cómo citar este artículo Artículos similares

Idioma: Ingles.
Referencias bibliográficas: 43
Paginas:
Archivo PDF: 252.39 Kb.


PALABRAS CLAVE

antioxidante, antimicrobiano, extracto natural, hongos comestibles, solvente de extracción.

RESUMEN

Los hongos comestibles han sido descritos como una fuente importante de compuestos biológicos capaces de reducir la carga de bacterias patógenas y los niveles de radicales libres en los alimentos. En este estudio, se determinó el análisis químico proximal de las harinas de hongos comestibles (Agaricus brasiliensis, Ganoderma lucidum y Pleurotus ostreatus). Asimismo, se determinó el efecto del solvente (agua, etanol y una mezcla de agua-etanol) sobre las propiedades fisicoquímicas, contenido de fenoles, actividad antimicrobiana y antioxidante de los extractos de hongos comestibles. Los resultados indican que las harinas de G. lucidum y P. ostreatus mostraron (p ‹ 0.05) el contenido más bajo de humedad (‹ 4%), lípidos (‹ 2%), el contenido más alto de carbohidratos (› 80%), y P. ostreatus el contenido más bajo de ceniza y el más alto en proteínas (p ‹ 0.05). Los extractos acuosos de los hongos presentaron los valores más altos de luminosidad y TSS (total soluble solids, por sus siglas en inglés) (p ‹ 0.05). Los extractos de P. ostreatus presentaron alto rendimiento de extracción (› 40%), pH, color rojo, color amarillo y contenido de fenoles y flavonoides (p ‹ 0.05). Por otra parte, los extractos etanólicos y acuoso-etanólicos de G. lucidum y P. ostreatus con un alto efecto inhibidor sobre Staphylococcus aureus › Listeria innocua › Escherichia coli › Salmonella typhimurium (p ‹ 0.05). Respecto a la actividad antioxidante, los extractos de P. ostreatus presentaron el mayor poder reductor y actividad antirradical; mientras que, los extractos etanólicos y acuoso-etanólicos de G. lucidum y P. ostreatus la mayor inhibición en la oxidación de lípidos (p ‹ 0.05). Los extractos de hongos comestibles evaluados podrían utilizarse como ingredientes antimicrobianos y antioxidantes para la industria alimentaria.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Abugri, D. A. & McElhenney, W. H. (2013). Extraction of total phenolic and flavonoids from edible wild and cultivated medicinal mushrooms as affected by different solvents. Journal of Natural Product and Plant Resources, 3(3), 37-42.

  2. Ainsworth, E. A. & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols, 2(4), 875. DOI: 10.1038/nprot.2007.102

  3. Association of Official Analytical Chemists (AOAC). (2005). Official Methods of Analysis, 18th ed., Gaitherburg, USA.

  4. Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurul, M. H. A., Ghafoor, K., Norulaini, N. A. N. & Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: a review. Journal of Food Engineering, 117(4), 426-436. DOI: 10.1016/j.jfoodeng.2013.01.014

  5. Berker, K. I., Güçlü, K., Tor, İ., Demirata, B. & Apak, R. (2010). Total antioxidant capacity assay using optimized ferricyanide/prussian blue method. Food Analytical Methods, 3(3), 154-168. DOI: 10.1007/s12161-009-9117-9

  6. Carneiro, A. A., Ferreira, I. C., Dueñas, M., Barros, L., Da Silva, R., Gomes, E. & Santos-Buelga, C. (2013). Chemical composition and antioxidant activity of dried powder formulations of Agaricus blazei and Lentinus edodes. Food Chemistry, 138(4), 2168-2173. DOI: 10.1016/j. foodchem.2012.12.036

  7. Cheung, L. M., Cheung, P. C. & Ooi, V. E. (2003). Antioxidant activity and total phenolics of edible mushroom extracts. Food Chemistry, 81(2), 249-255. DOI: 10.1016/S0308- 8146(02)00419-3

  8. Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564-582. DOI: 10.1128/CMR.12.4.564

  9. Gan, C. H., Amira, N. B. & Asmah, R. (2013). Antioxidant analysis of different types of edible mushrooms (Agaricus bisporous and Agaricus brasiliensis). International Food Research Journal, 20(3), 1095.

  10. Jafri, M., Jha, A., Bunkar, D. S. & Ram, R. C. (2013). Quality retention of oyster mushrooms (Pleurotus florida) by a combination of chemical treatments and modified atmosphere packaging. Postharvest Biology and Technology, 76, 112-118. DOI: 10.1016/j. postharvbio.2012.10.002

  11. Kalač, P. (2009). Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chemistry, 113(1), 9-16. DOI: 10.1016/j. foodchem.2008.07.077

  12. Kalyoncu, F., Oskay, M. & Kayalar, H. (2010). Antioxidant activity of the mycelium of 21 wild mushroom species. Mycology, 1(3), 195-199. DOI: 10.1080/21501203.2010.511292 Khatun, K., Mahtab, H., Khanam, P. A., Sayeed, M. A. & Khan, K. A. (2007). Oyster mushroom reduced blood glucose and cholesterol in diabetic subjects. Mymensingh Medical Journal, 16(1), 94-99. DOI: 10.3329/mmj. v16i1.261

  13. Kozarski, M., Klaus, A., Niksic, M., Jakovljevic, D., Helsper, J. P. & Van Griensven, L. J. (2011). Antioxidative and immunomodulating activities of polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum and Phellinus linteus. Food Chemistry, 129(4), 1667-1675. DOI: 10.1016/j. foodchem.2011.06.029

  14. Kumarasamy, K. K., Toleman, M. A., Walsh, T. R., Bagaria, J., Butt, F., Balakrishnan, R., Chaudhary, U., Doumith, M., Giske, C. G., Irfan, S., Krishnan, P., Kumar, A. V., Maharjan, S., Mushtaq, S., Noorie, T., Paterson, D. L., Pearson, A., Perry, C., Pike, R., Rao, B., Ray, U., Sarma, J. B., Sharma, M., Sheridan, E., Thirunarayan, M. A., Turton, J., Upadhyay, S., Warner, M., Welfare, W., Livermore, D. M. & Woodford, N. (2010). Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. The Lancet Infectious Diseases, 10(9), 597-602. DOI: 10.1016/ S1473-3099(10)70143-2

  15. Lin, E. S. & Sung, S. C. (2006). Cultivating conditions influence exopolysaccharide production by the edible Basidiomycete Antrodia cinnamomea in submerged culture. International Journal of Food Microbiology, 108(2), 182-187. DOI: 10.1016/j.ijfoodmicro.2005.11.010

  16. Ma, G., Yang, W., Zhao, L., Pei, F., Fang, D. & Hu, Q. (2018). A critical review on the health promoting effects of mushrooms nutraceuticals. Food Science and Human Wellness, 7(2), 125-133. DOI: 10.1016/j.fshw.2018.05.002

  17. Mami, Y., Peyvast, G., Ziaie, F., Ghasemnezhad, M. & Salmanpour, V. (2014). Improvement of shelf life and postharvest quality of white button mushroom by electron beam irradiation. Journal of Food Processing and Preservation, 38(4), 1673-1681. DOI: 10.1111/ jfpp.12129

  18. Martínez, J. A. & Sánchez F. (2007). Mecanismo de acción de los antibióticos. Jano: Medicina y Humanidades, 1660, 28-34.

  19. Mazzutti, S., Ferreira, S. R., Riehl, C.A., Smania, A., Smania, F.A. & Martínez, J. (2012). Supercritical fluid extraction of Agaricus brasiliensis: antioxidant and antimicrobial activities. The Journal of Supercritical Fluids, 70, 48-56. DOI: 10.1016/j.supflu.2012.06.010

  20. Molyneux, P. (2004). The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology, 26(2), 211-219.

  21. Montes, A. P., Rangel-Vargas, E., Lorenzo, J. M., Romero, L., & Santos, E. M. (2020). Edible mushrooms as a novel trend in the development of healthier meat products. Current Opinion in Food Science, 37, 118-124. DOI: 10.1016/j. cofs.2020.10.004

  22. Moure, A., Cruz, J. M., Franco, D., Domı́nguez, J. M., Sineiro, J., Domı́nguez, H., Núñez, M. J. & Parajó, J. C. (2001). Natural antioxidants from residual sources. Food Chemistry, 72(2), 145-171. DOI: 10.1016/S0308-8146(00)00223-5

  23. Nowacka, N., Nowak, R., Drozd, M., Olech, M., Los, R. & Malm, A. (2014). Analysis of phenolic constituents, antiradical and antimicrobial activity of edible mushrooms growing wild in Poland. LWT-Food Science and Technology, 59(2), 689-694. DOI: https://doi.org/10.1016/j.lwt.2014.05.041

  24. Nwachukwu, E. & Uzoeto, H. O. (2010). Antimicrobial activity of some local mushrooms on pathogenic isolates. Journal of Medicinal Plant Research, 4(23), 2460-2465. DOI: 10.5897/JMPR10.154

  25. Pan, K., Jiang, Q., Liu, G., Miao, X. & Zhong, D. (2013). Optimization extraction of Ganoderma lucidum polysaccharides and its immunity and antioxidant activities. International Journal of Biological Macromolecules, 55, 301-306. DOI: 10.1016/j.ijbiomac.2013.01.022

  26. Papuc, C., Goran, G. V., Predescu, C. N., Nicorescu, V. & Stefan, G. (2017). Plant polyphenols as antioxidant and antibacterial agents for shelf‐life extension of meat and meat products: Classification, structures, sources, and action mechanisms. Comprehensive Reviews in Food Science and Food Safety, 16(6), 1243-1268. DOI: 10.1111/1541-4337.12298

  27. Pfalzgraf, A., Frigg, M. & Steinhart, H. (1995). Alpha-tocopherol contents and lipid oxidation in pork muscle and adipose tissue during storage. Journal of Agricultural and Food Chemistry, 43, 1339-1342. DOI: 10.1021/jf00053a039

  28. Poljsak, B., Šuput, D. & Milisav, I. (2013). Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxidative Medicine and Cellular Longevity, 956792, 1-12. DOI: https://doi.org/10.1155/2013/956792

  29. Popova, M., Bankova, V., Butovska, D., Petkov, V., Nikolova‐Damyanova, B., Sabatini, A. G., Marcazzan, G. L. & Bogdanov, S. (2004). Validated methods for the quantification of biologically active constituents of poplartype propolis. Phytochemical Analysis, 15(4), 235-240. DOI: 10.1002/pca.777

  30. Quereshi, S., Pandey, A. K. & Sandhu, S. S. (2010). Evaluation of antibacterial activity of different Ganoderma lucidum extracts. People´s Journal of Science Research, 3(1), 9-13.

  31. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. DOI: 10.1016/S0891-5849(98)00315-3

  32. Robertson, A. R., Lozano, R. D., Alman, D. H., Orchard, S. E., Keitch, J. A., Connely, R., Graham, L. A., Acree, W. L., John, R. S. & Hoban, R. F. (1977). CIE Recommendations on uniform color spaces, color-difference equations, and metric color terms. Color Research and Application, 2, 5-6.

  33. Siu, K. C., Chen, X. & Wu, J. Y. (2014). Constituents actually responsible for the antioxidant activities of crude polysaccharides isolated from mushrooms. Journal of Functional Foods, 11, 548-556. DOI: 10.1016/j. jff.2014.08.012

  34. Soares, A. A., de Souza, C. G. M., Daniel, F. M., Ferrari, G. P., da Costa, S. M. G. & Peralta, R. M. (2009). Antioxidant activity and total phenolic content of Agaricus brasiliensis (Agaricus blazei Murril) in two stages of maturity. Food Chemistry, 112(4), 775-781. DOI: 10.1016/j.foodchem.2008.05.117

  35. Stojkovic, D. S., Barros, L., Calhelha, R. C., Glamoclija, J., Ciric, A., van Griensven, L. J., Sokovic, M. & Ferreira, I. C. (2013). A detailed comparative study between chemical and bioactive properties of Ganoderma lucidum from different origins. International Journal of Food Science and Nutrition, 65(1), 42-47. DOI: 10.3109/09637486.2013.832173

  36. Sudha, G., Vadivukkarasi, S., Shree, R. B. I. & Lakshmanan, P. (2012). Antioxidant activity of various extracts from an edible mushroom Pleurotus eous. Food Science and Biotechnology, 21(3), 661-668. DOI: 10.1007/s10068- 012-0086-1

  37. Sun, L., Bai, X. & Zhuang, Y. (2014). Effect of different cooking methods on total phenolic contents and antioxidant activities of four Boletus mushrooms. Journal of Food Science and Technology, 51(11), 3362-3368. DOI: 10.1007/s13197- 012-0827-4

  38. Tsai, S. Y., Tsai, H. L. & Mau, J. L. (2007). Antioxidant properties of Agaricus blazei, Agrocybe cylindracea, and Boletus edulis. LWT-Food Science and Technology, 40(8), 1392-1402. DOI: 10.1016/j.lwt.2006.10.001

  39. Vamanu, E. (2013). Antioxidant properties and chemical compositions of various extracts of the edible commercial mushroom, Pleurotus ostreatus. Revista de Chimie, 64(1), 49-54.

  40. Vargas-Sánchez, R. D., Torrescano-Urrutia, G. R., Ibarra-Arias, F. J., Portillo-Loera, J. J., Ríos-Rincón, F. G. & Sánchez- Escalante, A. (2018). Effect of dietary supplementation with Pleurotus ostreatus on growth performance and meat quality of Japanese quail. Livestock Science, 207, 117-125. DOI: 10.1016/j.livsci.2017.11.015

  41. Yan, J., Zhu, L., Qu, Y., Qu, X., Mu, M., Zhang, M., Muneer, G., Zhou, Y. & Sun, L. (2019). Analyses of active antioxidant polysaccharides from four edible mushrooms. International Journal of Biological Macromolecules, 123, 945-956. DOI: 10.1016/j.ijbiomac.2018.11.079

  42. Ye, Z. & Lin, Y. (2001). Study on antibacterial effects of Agaricus blazei. Food Science, 22(4), 82-84.

  43. Wiegand, I., Hilpert, K. & Hancock, R. E. W. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3(2), 163-175. DOI: 10.1038/nprot.2007.521




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2021;24

ARTíCULOS SIMILARES

CARGANDO ...