medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2021, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2021; 24 (1)

Effect of extraction solvent on metabolites content, antioxidant, and antibacterial activity of coffee bagasse

García-Larez FL, Murillo-Hernández JL, Vargas-Sánchez RD, Torrescano-Urrutia GR, Torres-Martínez BM, Sánchez-Escalante A
Full text How to cite this article

Language: English
References: 37
Page:
PDF size: 243.80 Kb.


Key words:

coffee residues, extraction technologies, bioactive compounds, antioxidant, antibacterial.

ABSTRACT

Bagasse, one of the residues obtained from coffee processing, is an important source of metabolites, such as polysaccharides and phenolic compounds, with functional properties derived from its antioxidant and antimicrobial activities. The objective of this study was to evaluate the effect of the extraction solvent on metabolites content, as well as on antioxidant and antibacterial activity of the aqueous (T1), ethanolic (T2) and aqueous-ethanolic (T3) extracts of coffee bagasse. The results demonstrated that T1 showed the highest total carbohydrates, flavanones and dihydroflavonols content, T2 presented the highest total flavonoids and caffeoylquinic acid content, while T3 showed the highest total phenolic, flavones and flavonols content (p ‹ 0.05). Furthermore, the greatest inhibitions of free-radicals and ferric reducing antioxidant power were detected in T1 and T3, while T2 showed higher reducing power ability depending on the concentration (p ‹ 0.05). Greater inhibitory effects were observed in T3 against Gram-positive bacteria (Staphylococcus aureus and Listeria monocytogenes), T2 against Echerichia coli, T2 and T3 against Pseudomonas aeruginosa depending upon the concentration (p ‹ 0.05). In conclusion, these results indicate that composition and properties of extract of coffee bagasse depend of the solvent used during the extraction.


REFERENCES

  1. Ainsworth, E. A. & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature Protocols, 2(4), 875-877. https://doi.org/10.1038/nprot.2007.102

  2. Albalasmeh, A. A., Berhe, A. A. & Ghezzehei, T. A. (2013). A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydrate Polymers, 97(2), 253-261. https://doi. org/10.1016/j.carbpol.2013.04.072

  3. Asano, I., Nakamura, Y., Hoshino, H., Aoki, K., Fujii, S., Imura, N. & Iino, H. (2001). Use of mannooligosaccharides from coffee mannan by intestinal bacteria. Journal of the Agricultural Chemical Society of Japan, 75, 1077-1083. https://doi.org/10.1271/nogeikagaku1924.75.1077

  4. Ballesteros, L. F., Teixeira, J. A. & Mussatto, S. I. (2014). Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food and Bioprocess Technology, 7(12), 3493-3503. https://doi.org/10.1007/ s11947-014-1349-z

  5. Balzano, M., Loizzo, M. R., Tundis, R., Lucci, P., Nunez, O., Fiorini, D., Giardinieri, A. & Pacetti, D. (2020). Spent espresso coffee grounds as a source of anti-proliferative and antioxidant compounds. Innovative Food Science & Emerging Technologies, 59, 102254. https://doi. org/10.1016/j.ifset.2019.102254

  6. Benzie, I. F. & Strain, J. J. (1999). Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. In Methods in Enzymology, 299, 15-27. https://doi.org/10.1016/S0076-6879(99)99005-5

  7. Bravo, J., Monente, C., Juániz, I., De Peña, M. P. & Cid, C. (2013). Influence of extraction process on antioxidant capacity of spent coffee. Food Research International, 50(2), 610-616. https://doi.org/10.1016/j.foodres.2011.04.026

  8. Berker, K. I., Güçlü, K., Tor, İ., Demirata, B. & Apak, R. (2010). Total antioxidant capacity assay using optimized ferricyanide/prussian blue method. Food Analytical Methods, 3(3), 154-168. https://doi.org/10.1007/s12161- 009-9117-9

  9. Chemat, F., Abert-Vian, M., Fabiano-Tixier, A. S., Strube, J., Uhlenbrock, L., Gunjevic, V. & Cravotto, G. (2019). Green extraction of natural products. Origins, current status, and future challenges. Trends in Analytical Chemistry, 118, 248-263. https://doi.org/10.1016/j.trac.2019.05.037

  10. Choi, B. & Koh, E. (2017). Spent coffee as a rich source of antioxidative compounds. Food Science and Biotechnology, 26(4), 921-927. https://doi.org/10.1007/ s10068-017-0144-9

  11. CLSI (2012). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, approved standard. Clinical and Laboratory Standards Institute (Ed.). National Committee for Clinical Laboratory Standards (pp M7-A7), Pennsylvania.

  12. Esquivel, P. & Jiménez, V. M. (2012). Functional properties of coffee and coffee by-products. Food Research International, 46(2), 488-495. https://doi.org/10.1016/j. foodres.2011.05.028

  13. Griffiths, D. W., Bain, H. & Dale, M. F. B. (1992). Development of a rapid colorimetric method for the determination of chlorogenic acid in freeze‐dried potato tubers. Journal of the Science of Food and Agriculture, 58(1), 41-48. https:// doi.org/10.1002/jsfa.2740580108

  14. Kim, J. H., Ahn, D. U., Eun, J. B. & Moon, S. H. (2016). Antioxidant effect of extracts from the coffee residue in raw and cooked meat. Antioxidants, 5(3), 21. https://doi. org/10.3390/antiox5030021

  15. Klangpetch, W. (2017). Evaluation of antioxidant, antipathogenic and probiotic growth stimulatory activities of spent coffee ground polyphenol extracts. International Food Research Journal, 24(5).

  16. Leopoldini, M., Marino, T., Russo, N. & Toscano, M. (2004). Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. The Journal of Physical Chemistry A, 108(22), 4916-4922. https://doi.org/10.1021/ jp037247d

  17. Liu, Z. Q. (2010). Chemical methods to evaluate antioxidant ability. Chemical Reviews, 110(10), 5675-5691. https://doi. org/10.1021/cr900302x

  18. Lozada-Ramírez, J. D., Ortega-Regules, A. E., Hernández, L. R. & Anaya de Parrodi, C. (2021). Spectroscopic and Spectrometric Applications for the Identification of Bioactive Compounds from Vegetal Extracts. Applied Sciences, 11(7), 3039. https://doi.org/10.3390/app11073039

  19. Marković, Z., Milenković, D., Đorović, J., Marković, J. M. D., Stepanić, V., Lučić, B. & Amić, D. (2012). PM6 and DFT study of free radical scavenging activity of morin. Food Chemistry, 134(4), 1754-1760. https://doi.org/10.1016/j. foodchem.2012.03.124

  20. Molyneux, P. (2004). The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology, 26(2), 211-219.

  21. Monente, C., Bravo, J., Vitas, A. I., Arbillaga, L., De Peña, M. P. & Cid, C. (2015). Coffee and spent coffee extracts protect against cell mutagens and inhibit growth of food-borne pathogen microorganisms. Journal of Functional Foods, 12, 365-374. https://doi.org/10.1016/j.jff.2014.12.006

  22. Murthy, P. S. & Naidu, M. M. (2010). Recovery of phenolic antioxidants and functional compounds from coffee industry by-products. Food and Bioprocess Technology, 5(3), 897- 903. https://doi.org/10.1007/s11947-010-0363-z

  23. Mussatto, S. I., Machado, E. M., Martins, S. & Teixeira, J. A. (2011a). Production, composition, and application of coffee and its industrial residues. Food and Bioprocess Technology, 4(5), 661. https://doi.org/10.1007/s11947-011-0565-z

  24. Mussatto, S. I., Ballesteros, L. F., Martins, S. & Teixeira, J. A. (2011b). Extraction of antioxidant phenolic compounds from spent coffee grounds. Separation and Purification Technology, 83, 173-179. https://doi.org/10.1016/j. seppur.2011.09.036

  25. Oreopoulou, A., Tsimogiannis, D. & Oreopoulou, V. (2019). Extraction of polyphenols from aromatic and medicinal plants: an overview of the methods and the effect of extraction parameters. In Ronald Ross Watson (Ed.). Polyphenols in plants (pp. 243-259). UK, Academic Press.

  26. Panusa, A., Zuorro, A., Lavecchia, R., Marrosu, G. & Petrucci, R. (2013). Recovery of natural antioxidants from spent coffee grounds. Journal of Agricultural and Food Chemistry, 61(17), 4162-4168. https://doi.org/10.1021/jf4005719

  27. Pisoschi, A. M. & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry, 97, 55-74. https://doi. org/10.1016/j.ejmech.2015.04.040

  28. Popova, M., Bankova, V., Butovska, D., Petkov, V., Nikolova-Damyanova, B., Sabatini, A. G., Marcazzan, G. L. & Bogdanov, S. (2004). Validated methods for the quantification of biologically active constituents of poplartype propolis. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques, 15(4), 235-240. https://doi.org/10.1002/pca.777

  29. Ramírez-Rojo, M. I., Vargas-Sánchez, R. D., Torres-Martínez, B. D. M., Torrescano-Urrutia, G. R., Lorenzo, J. M., & Sánchez-Escalante, A. (2019). Inclusion of ethanol extract of mesquite leaves to enhance the oxidative stability of pork patties. Foods, 8(12), 631. https://doi.org/10.3390/ foods8120631

  30. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3

  31. SAGARPA. (2016). Mexican coffee, national agricultural plan 2017-2030. https://www.gob.mx/cms/uploads/attachment/ file/256426/B_sico-Caf_.pdf Accessed 10 September 2020.

  32. Sant’Anna, V., Biondo, E., Kolchinski, E. M., da Silva, L. F. S., Corrêa, A. P. F., Bach, E. & Brandelli, A. (2017). Total polyphenols, antioxidant, antimicrobial and allelopathic activities of spend coffee ground aqueous extract. Waste and BiomassValorization, 8(2), 439-442. https://doi. org/10.1007/s12649-016-9575-4

  33. Santana-Méridas, O., González-Coloma, A. & Sánchez-Vioque, R. (2012). Agricultural residues as a source of bioactive natural products. Phytochemistry Reviews, 11(4), 447-466. https://doi.org/10.1007/s11101-012-9266-0

  34. Sultana, B., Anwar, F. & Ashraf, M. (2009). Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules, 14(6), 2167-2180. https://doi.org/10.3390/molecules14062167

  35. Terpinc, P., Čeh, B., Ulrih, N. P. & Abramovič, H. (2012). Studies of the correlation between antioxidant properties and the total phenolic content of different oil cake extracts. Industrial Crops and Products, 39, 210-217. https://doi. org/10.1016/j.indcrop.2012.02.023

  36. Yen, W. J., Wang, B. S., Chang, L. W. & Duh, P. D. (2005). Antioxidant properties of roasted coffee residues. Journal of Agricultural and Food Chemistry, 53(7), 2658-2663. https://doi.org/10.1021/jf0402429

  37. Zhishen, J., Mengcheng, T. & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. https://doi.org/10.1016/S0308- 8146(98)00102-2




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2021;24