medigraphic.com
ENGLISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Digital)
ISSN 1405-888X (Impreso)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Mostrar índice
  • Números disponibles
  • Información
    • Información general        
    • Directorio
  • Publicar
    • Instrucciones para autores        
  • medigraphic.com
    • Inicio
    • Índice de revistas            
    • Registro / Acceso
  • Mi perfil

2021, Número 1

<< Anterior Siguiente >>

TIP Rev Esp Cienc Quim Biol 2021; 24 (1)


Efecto del disolvente de extracción sobre el contenido de metabolitos, actividad antioxidante y antibacteriana del bagazo de café

García-Larez FL, Murillo-Hernández JL, Vargas-Sánchez RD, Torrescano-Urrutia GR, Torres-Martínez BM, Sánchez-Escalante A
Texto completo Cómo citar este artículo Artículos similares

Idioma: Ingles.
Referencias bibliográficas: 37
Paginas:
Archivo PDF: 243.80 Kb.


PALABRAS CLAVE

residuos de café, tecnologías de extracción, compuestos bioactivos antioxidante, antibacteriano.

RESUMEN

El bagazo, es uno de los residuos que se obtienen del procesamiento del café, es una fuente importante de metabolitos, como polisacáridos y compuestos fenólicos, con propiedades funcionales derivadas de su actividad antioxidante y antimicrobiana. El objetivo de este estudio fue evaluar el efecto del solvente de extracción sobre el contenido de metabolitos, así como sobre la actividad antioxidante y antibacteriana del extracto acuoso (T1), etanólico (T2) y acuoso-etanólico (T3) del bagazo del café. Los resultados demostraron que T1 presentó el mayor contenido total de carbohidratos, flavanonas y dihidroflavonoles, T2 presentó el mayor contenido total de flavonoides y ácido cafeoilquínico mientras que T3 presentó el mayor contenido de fenoles totales, flavonas y flavonoles (p ‹ 0.05). Además, la mayor inhibición de radicales libres y poder de reducción antioxidante del ión férrico se detectaron en T1 y T3, mientras que T2 mostró mayor capacidad de poder reductor dependiendo de la concentración (p ‹ 0.05). Se observaron mayores efectos inhibidores en T3 frente a las bacterias Gram-positivas (Staphylococcus aureus y Listeria monocytogenes), T2 frente a Echerichia coli, T2 y T3 frente a Pseudomonas aeruginosa según la concentración (p ‹ 0.05). En conclusión, estos resultados indican que la composición y propiedades del extracto de bagazo del café dependen del solvente utilizado durante la extracción.


REFERENCIAS (EN ESTE ARTÍCULO)

  1. Ainsworth, E. A. & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature Protocols, 2(4), 875-877. https://doi.org/10.1038/nprot.2007.102

  2. Albalasmeh, A. A., Berhe, A. A. & Ghezzehei, T. A. (2013). A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydrate Polymers, 97(2), 253-261. https://doi. org/10.1016/j.carbpol.2013.04.072

  3. Asano, I., Nakamura, Y., Hoshino, H., Aoki, K., Fujii, S., Imura, N. & Iino, H. (2001). Use of mannooligosaccharides from coffee mannan by intestinal bacteria. Journal of the Agricultural Chemical Society of Japan, 75, 1077-1083. https://doi.org/10.1271/nogeikagaku1924.75.1077

  4. Ballesteros, L. F., Teixeira, J. A. & Mussatto, S. I. (2014). Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food and Bioprocess Technology, 7(12), 3493-3503. https://doi.org/10.1007/ s11947-014-1349-z

  5. Balzano, M., Loizzo, M. R., Tundis, R., Lucci, P., Nunez, O., Fiorini, D., Giardinieri, A. & Pacetti, D. (2020). Spent espresso coffee grounds as a source of anti-proliferative and antioxidant compounds. Innovative Food Science & Emerging Technologies, 59, 102254. https://doi. org/10.1016/j.ifset.2019.102254

  6. Benzie, I. F. & Strain, J. J. (1999). Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. In Methods in Enzymology, 299, 15-27. https://doi.org/10.1016/S0076-6879(99)99005-5

  7. Bravo, J., Monente, C., Juániz, I., De Peña, M. P. & Cid, C. (2013). Influence of extraction process on antioxidant capacity of spent coffee. Food Research International, 50(2), 610-616. https://doi.org/10.1016/j.foodres.2011.04.026

  8. Berker, K. I., Güçlü, K., Tor, İ., Demirata, B. & Apak, R. (2010). Total antioxidant capacity assay using optimized ferricyanide/prussian blue method. Food Analytical Methods, 3(3), 154-168. https://doi.org/10.1007/s12161- 009-9117-9

  9. Chemat, F., Abert-Vian, M., Fabiano-Tixier, A. S., Strube, J., Uhlenbrock, L., Gunjevic, V. & Cravotto, G. (2019). Green extraction of natural products. Origins, current status, and future challenges. Trends in Analytical Chemistry, 118, 248-263. https://doi.org/10.1016/j.trac.2019.05.037

  10. Choi, B. & Koh, E. (2017). Spent coffee as a rich source of antioxidative compounds. Food Science and Biotechnology, 26(4), 921-927. https://doi.org/10.1007/ s10068-017-0144-9

  11. CLSI (2012). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, approved standard. Clinical and Laboratory Standards Institute (Ed.). National Committee for Clinical Laboratory Standards (pp M7-A7), Pennsylvania.

  12. Esquivel, P. & Jiménez, V. M. (2012). Functional properties of coffee and coffee by-products. Food Research International, 46(2), 488-495. https://doi.org/10.1016/j. foodres.2011.05.028

  13. Griffiths, D. W., Bain, H. & Dale, M. F. B. (1992). Development of a rapid colorimetric method for the determination of chlorogenic acid in freeze‐dried potato tubers. Journal of the Science of Food and Agriculture, 58(1), 41-48. https:// doi.org/10.1002/jsfa.2740580108

  14. Kim, J. H., Ahn, D. U., Eun, J. B. & Moon, S. H. (2016). Antioxidant effect of extracts from the coffee residue in raw and cooked meat. Antioxidants, 5(3), 21. https://doi. org/10.3390/antiox5030021

  15. Klangpetch, W. (2017). Evaluation of antioxidant, antipathogenic and probiotic growth stimulatory activities of spent coffee ground polyphenol extracts. International Food Research Journal, 24(5).

  16. Leopoldini, M., Marino, T., Russo, N. & Toscano, M. (2004). Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. The Journal of Physical Chemistry A, 108(22), 4916-4922. https://doi.org/10.1021/ jp037247d

  17. Liu, Z. Q. (2010). Chemical methods to evaluate antioxidant ability. Chemical Reviews, 110(10), 5675-5691. https://doi. org/10.1021/cr900302x

  18. Lozada-Ramírez, J. D., Ortega-Regules, A. E., Hernández, L. R. & Anaya de Parrodi, C. (2021). Spectroscopic and Spectrometric Applications for the Identification of Bioactive Compounds from Vegetal Extracts. Applied Sciences, 11(7), 3039. https://doi.org/10.3390/app11073039

  19. Marković, Z., Milenković, D., Đorović, J., Marković, J. M. D., Stepanić, V., Lučić, B. & Amić, D. (2012). PM6 and DFT study of free radical scavenging activity of morin. Food Chemistry, 134(4), 1754-1760. https://doi.org/10.1016/j. foodchem.2012.03.124

  20. Molyneux, P. (2004). The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology, 26(2), 211-219.

  21. Monente, C., Bravo, J., Vitas, A. I., Arbillaga, L., De Peña, M. P. & Cid, C. (2015). Coffee and spent coffee extracts protect against cell mutagens and inhibit growth of food-borne pathogen microorganisms. Journal of Functional Foods, 12, 365-374. https://doi.org/10.1016/j.jff.2014.12.006

  22. Murthy, P. S. & Naidu, M. M. (2010). Recovery of phenolic antioxidants and functional compounds from coffee industry by-products. Food and Bioprocess Technology, 5(3), 897- 903. https://doi.org/10.1007/s11947-010-0363-z

  23. Mussatto, S. I., Machado, E. M., Martins, S. & Teixeira, J. A. (2011a). Production, composition, and application of coffee and its industrial residues. Food and Bioprocess Technology, 4(5), 661. https://doi.org/10.1007/s11947-011-0565-z

  24. Mussatto, S. I., Ballesteros, L. F., Martins, S. & Teixeira, J. A. (2011b). Extraction of antioxidant phenolic compounds from spent coffee grounds. Separation and Purification Technology, 83, 173-179. https://doi.org/10.1016/j. seppur.2011.09.036

  25. Oreopoulou, A., Tsimogiannis, D. & Oreopoulou, V. (2019). Extraction of polyphenols from aromatic and medicinal plants: an overview of the methods and the effect of extraction parameters. In Ronald Ross Watson (Ed.). Polyphenols in plants (pp. 243-259). UK, Academic Press.

  26. Panusa, A., Zuorro, A., Lavecchia, R., Marrosu, G. & Petrucci, R. (2013). Recovery of natural antioxidants from spent coffee grounds. Journal of Agricultural and Food Chemistry, 61(17), 4162-4168. https://doi.org/10.1021/jf4005719

  27. Pisoschi, A. M. & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry, 97, 55-74. https://doi. org/10.1016/j.ejmech.2015.04.040

  28. Popova, M., Bankova, V., Butovska, D., Petkov, V., Nikolova-Damyanova, B., Sabatini, A. G., Marcazzan, G. L. & Bogdanov, S. (2004). Validated methods for the quantification of biologically active constituents of poplartype propolis. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques, 15(4), 235-240. https://doi.org/10.1002/pca.777

  29. Ramírez-Rojo, M. I., Vargas-Sánchez, R. D., Torres-Martínez, B. D. M., Torrescano-Urrutia, G. R., Lorenzo, J. M., & Sánchez-Escalante, A. (2019). Inclusion of ethanol extract of mesquite leaves to enhance the oxidative stability of pork patties. Foods, 8(12), 631. https://doi.org/10.3390/ foods8120631

  30. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3

  31. SAGARPA. (2016). Mexican coffee, national agricultural plan 2017-2030. https://www.gob.mx/cms/uploads/attachment/ file/256426/B_sico-Caf_.pdf Accessed 10 September 2020.

  32. Sant’Anna, V., Biondo, E., Kolchinski, E. M., da Silva, L. F. S., Corrêa, A. P. F., Bach, E. & Brandelli, A. (2017). Total polyphenols, antioxidant, antimicrobial and allelopathic activities of spend coffee ground aqueous extract. Waste and BiomassValorization, 8(2), 439-442. https://doi. org/10.1007/s12649-016-9575-4

  33. Santana-Méridas, O., González-Coloma, A. & Sánchez-Vioque, R. (2012). Agricultural residues as a source of bioactive natural products. Phytochemistry Reviews, 11(4), 447-466. https://doi.org/10.1007/s11101-012-9266-0

  34. Sultana, B., Anwar, F. & Ashraf, M. (2009). Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules, 14(6), 2167-2180. https://doi.org/10.3390/molecules14062167

  35. Terpinc, P., Čeh, B., Ulrih, N. P. & Abramovič, H. (2012). Studies of the correlation between antioxidant properties and the total phenolic content of different oil cake extracts. Industrial Crops and Products, 39, 210-217. https://doi. org/10.1016/j.indcrop.2012.02.023

  36. Yen, W. J., Wang, B. S., Chang, L. W. & Duh, P. D. (2005). Antioxidant properties of roasted coffee residues. Journal of Agricultural and Food Chemistry, 53(7), 2658-2663. https://doi.org/10.1021/jf0402429

  37. Zhishen, J., Mengcheng, T. & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. https://doi.org/10.1016/S0308- 8146(98)00102-2




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2021;24

ARTíCULOS SIMILARES

CARGANDO ...