medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2021, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2021; 24 (1)

Elaboration of a primary packaging for food from residues of corn and mexican pinion

Linares-Castañeda A, Corzo-Ríos LJ, Bautista-Ramírez E, Gómez y Gómez YM
Full text How to cite this article

Language: Spanish
References: 91
Page:
PDF size: 412.24 Kb.


Key words:

paper packaging, corn, mexican pinion, serrano pepper, postharvest storage.

ABSTRACT

The growing interest in conserving the environment is motivating the development of biodegradable packaging for food from agro-industrial waste. Corn crops and Mexican pinion generate considerable amounts of lignocellulose waste that can be used as feedstock to make paper packaging. The objective of this work was to elaborate and characterize a paper packaging from cellulose of fibrous residues of Mexican pinion (CCJ) and corn stem/leaves (CTM), and to determine its functionality in prolonging the useful life of serrano peppers stored at room temperature. Paper was made from different concentrations (100-0 to 80-20%) of CTM and CCJ by alkaline method with NaOH. Paper formulation P5 was selected corresponding to a relation 95-5% of CTM-CCJ respectively with the purpose to use it to preserve quality in Serrano pepper (grammage 97.0 g/m2, hardness 3112 MPa, thickness 0.25 mm). The use of P5 as packaging for Serrano pepper favors the values of firmness, moisture, color and vitamin C with respect to the control pepper during the days of storage at room temperature. The properties of texture and color are extremely important in the qualitative quality of Serrano pepper, since being a variety of fresh consumption, are criteria for consumption or acquisition of this product.


REFERENCES

  1. Abrantes, S., Amaral, M. E., Costa, A. P. & Duarte, A. P. (2007). Cynara cardunculus L. alkaline pulps: Alternatives fibres for paper and paperboard production. Bioresource Technology, 98(15), 2873–2878. https://doi.org/10.1016/J. BIORTECH.2006.09.052

  2. Adel, A. M., El-Gendy, A. A., Diab, M. A., Abou-Zeid, R. E. & El-Zawawy, W. K. (2016). Microfibrillated cellulose from agricultural residues. Part I: Papermaking application. Industrial Crops and Products, 93, 161–174. https://doi. org/10.1016/J.INDCROP.2016.04.043

  3. Adetunji, C. O., Ojediran, J. O., Adetunji, J. B. & Owa, S. O. (2019). Influence of chitosan edible coating on postharvest qualities of Capsicum annum L. during storage in evaporative cooling system . Croatian Journal of Food Science and Technology, 11(1), 59–66. https://doi. org/10.17508/cjfst.2019.11.1.09

  4. Aguilar-Méndez, M. A., San Martín-Martínez, E., Espinoza- Herrera, N. L., Sánchez-Flores, M., Cruz-Orea, A. & Ramírez-Ortíz, M. E. (2012). Caracterización y aplicación de películas a base de gelatina-carboximetilcelulosa para la preservación de frutos de guayaba. Superficies y Vacío, 25(1), 1–7. Retrieved from http://www.scielo. org.mx/scielo.php?script=sci_arttext&pid=S1665- 35212012000100001&lng=es&tlng=es

  5. Amador, A. L. & Boschini-Figueroa, C. (2000). Fenología productiva y nutricional de maíz para la producción de forraje. Agronomía Mesoamericana, 11(1), 171–177.

  6. Amode, N. S. & Jeetah, P. (2021). Paper Production from Mauritian Hemp Fibres. Waste and Biomass Valorization, 12(4), 1781–1802. https://doi.org/10.1007/s12649-020- 01125-y

  7. Anguiano Barrales, J. (2010). Comparación en la respuesta fisiológica en plantas de chile bajo el efecto de tres temperaturas nocturnas. Tesis de maestría. Universidad Autónoma de Nuevo León, 136. Retrieved from http:// eprints.uanl.mx/2043/1/1080190958.pdf

  8. Antonio, E. (2010). Composición química próximal y evaluación de la capacidad antioxidante del chile de agua (Capsicum annuum L.). Tesis de maestría. Universidad Autónoma Metropolitana, 76. Retrieved from. Retrieved from http://148.206.53.233/tesiuami/UAMI15479.pdf

  9. AOAC. (1997). Association of Official Analytical Chemists. Official Methods of Analysis, Vol. 16, 3rd revision, Gaithersburg, MD.

  10. Ashori, A. & Sheshmani, S. (2010). Hybrid composites made from recycled materials: Moisture absorption and thickness swelling behavior. Bioresource Technology, 101(12), 4717–4720. https://doi.org/10.1016/j.biortech.2010.01.060

  11. Bajpai, P. (2015). Basic Overview of Pulp and Paper Manufacturing Process. In Green Chemistry and Sustainability in Pulp and Paper Industry, 11–39. https:// doi.org/10.1007/978-3-319-18744-0_2

  12. Boerzhijin, S., Makino, Y., Hirai, M. Y., Sotome, I. & Yoshimura, M. (2020). Effect of perforation-mediated modified atmosphere packaging on the quality and bioactive compounds of soft kale (Brassica oleracea L. convar. acephala (DC) Alef. var. sabellica L.) during storage. Food Packaging and Shelf Life, 23, 100427. https://doi. org/10.1016/j.fpsl.2019.100427

  13. Bras, J., Hassan, M. L., Bruzesse, C., Hassan, E. A., El-Wakil, N. A. & Dufresne, A. (2010). Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Industrial Crops and Products, 32(3), 627–633. https://doi.org/10.1016/J. INDCROP.2010.07.018

  14. Casey, J. (1991). Pulpa y papel. Química y tecnología química. Vol. 1. Limusa, México Castellanos, D. A., Polanía, W. & Herrera, A. O. (2016). Development of an equilibrium modified atmosphere packaging (EMAP) for feijoa fruits and modeling firmness and color evolution. Postharvest Biology and Technology, 120, 193–203. https://doi.org/10.1016/j. postharvbio.2016.06.012

  15. Castillo-Téllez, M., Pilatowsky-Figueroa, I., López-Vidaña, E. C., Sarracino-Martínez, O. & Hernández-Gálvez, G. (2017). Dehydration of the red chilli (Capsicum annuum L., costeño) using an indirect-type forced convection solar dryer. Applied Thermal Engineering, 114, 1137–1144. https://doi.org/10.1016/j.applthermaleng.2016.08.114

  16. Chitravathi, K., Chauhan, O. P. & Raju, P. S. (2014). Postharvest shelf-life extension of green chillies (Capsicum annuum L.) using shellac-based edible surface coatings. Postharvest Biology and Technology, 92, 146–148. https://doi. org/10.1016/j.postharvbio.2014.01.021

  17. Chitravathi, K., Chauhan, O. P. & Raju, P. S. (2015). Influence of modified atmosphere packaging on shelf-life of green chillies (Capsicum annuum L.). Food Packaging and Shelf Life, 4, 1–9. https://doi.org/10.1016/j.fpsl.2015.02.001

  18. Chitravathi, Kallepalli, Chauhan, O. P. & Kizhakkedath, J. (2020). Shelf life extension of green chillies (Capsicum annuum L.) using passive modified atmosphere packaging and gamma irradiation. Journal of Food Processing and Preservation, 44(8), e14622. https://doi.org/10.1111/ jfpp.14622

  19. Das, S. (2017). Mechanical and water swelling properties of waste paper reinforced unsaturated polyester composites. Construction and Building Materials, 138, 469–478. https:// doi.org/10.1016/j.conbuildmat.2017.02.041

  20. Díaz-Pérez, J. C., Muy-Rangel, M. D. & Mascorro, A. G. (2007). Fruit size and stage of ripeness affect postharvest water loss in bell pepper fruit (Capsicum annuum L.). Journal of the Science of Food and Agriculture, 87(1), 68–73. https://doi. org/10.1002/jsfa.2672

  21. Domene, M. A. & Segura, M. (2014). Parámetros de calidad interna de hortalizas y frutas en la industria agroalimentaria. Negocios Agroalimentario Cooper Cajamar Fichas Transf, 5, 1–18.

  22. Eckhoff, S. R., Paulsen, M. R. & Yang, S. C. (2003). Maize. In B. Caballero, P. Finglas & F. Toldra (Ed.). Encyclopedia of Food Sciences and Nutrition (Second edition). Academic Press, 3647–3653, New York. https://doi.org/10.1016/B0- 12-227055-X/00725-2

  23. Egüés, I., Sanchez, C., Mondragon, I. & Labidi, J. (2012). Effect of alkaline and autohydrolysis processes on the purity of obtained hemicelluloses from corn stalks. Bioresource Technology, 103(1), 239–248. https://doi.org/10.1016/J. BIORTECH.2011.09.139

  24. Emana, B., Afari-Sefa, V., Nenguwo, N., Ayana, A., Kebede, D. & Mohammed, H. (2017). Characterization of pre- and postharvest losses of tomato supply chain in Ethiopia. Agriculture & Food Security, 6(1), 3. https://doi. org/10.1186/s40066-016-0085-1

  25. Fan, C. & Zhang, Y. (2018). Adsorption isotherms, kinetics and thermodynamics of nitrate and phosphate in binary systems on a novel adsorbent derived from corn stalks. Journal of Geochemical Exploration, 188, 95–100. https:// doi.org/10.1016/J.GEXPLO.2018.01.020

  26. Florentino-Ramos, E., Villa-Ruano, N., Hidalgo-Martínez, D., Ramírez-Meraz, M., Méndez-Aguilar, R., Velásquez-Valle, R., Zepeda-Vallejo, L. G., Pérez-Hernández, N. & Becerra- Martínez, E. (2019). 1H NMR-based fingerprinting of eleven Mexican Capsicum annuum cultivars. Food Research International, 121, 12–19. https://doi.org/10.1016/j. foodres.2019.03.025

  27. Flores-López, M. L., Cerqueira, M. A., de Rodríguez, D. J. & Vicente, A. A. (2016). Perspectives on utilization of edible coatings and nano-laminate coatings for extension of postharvest storage of fruits and vegetables. Food Engineering Reviews, 8(3), 292–305. https://doi. org/10.1007/s12393-015-9135-x

  28. Gil, Á. (2010). Tratado de nutrición, Tomo II: Composición y calidad nutritiva de los alimentos. Madrid. Editorial Panamericana.

  29. Gómez, P. & Camelo, A. (2002). Calidad postcosecha de tomates almacenados en atmósferas controladas. Horticultura Brasileira, 20, 38–43. Retrieved from http:// www.scielo.br/scielo.php?script=sci_arttext&pid=S0102- 05362002000100007&nrm=iso

  30. Gregori, G. (2007). La transpiración de frutas y verduras. 17o Symposium International PHYTOMA.

  31. Han, Q., Gao, X., Zhang, H., Chen, K., Peng, L. & Jia, Q. (2019). Preparation and comparative assessment of regenerated cellulose films from corn (Zea mays) stalk pulp fines in DMAc/LiCl solution. Carbohydrate Polymers, 218, 315–323. https://doi.org/10.1016/j.carbpol.2019.04.083

  32. Hedayati, S. & Niakousari, M. (2015). Effect of coatings of silver canoparticles and gum arabic on physicochemical and microbial properties of green bell pepper ( Capsicum annuum ). Journal of Food Processing and Preservation, 39(6), 2001–2007. https://doi.org/10.1111/jfpp.12440

  33. Herbig, A. L. & Renard, C. M. G. C. (2017). Factors that impact the stability of vitamin C at intermediate temperatures in a food matrix. Food Chemistry, 220, 444–451. https://doi. org/10.1016/j.foodchem.2016.10.012

  34. Hernández-López, G., Ventura-Aguilar, R. I., Correa-Pacheco, Z. N., Bautista-Baños, S. & Barrera-Necha, L. L. (2020). Nanostructured chitosan edible coating loaded with α-pinene for the preservation of the postharvest quality of Capsicum annuum L. and Alternaria alternata control. International Journal of Biological Macromolecules, 165, 1881–1888. https://doi.org/10.1016/j.ijbiomac.2020.10.094

  35. Hiatt, A. N., Ferruzzi, M. G., Taylor, L. S. & Mauer, L. J. (2011). Deliquescence behavior and chemical stability of vitamin C forms (ascorbic acid, sodium ascorbate, and calcium ascorbate) and blends. International Journal of Food Properties, 14(6), 1330–1348. https://doi. org/10.1080/10942911003650338

  36. Iewkittayakorn, J., Khunthongkaew, P., Wongnoipla, Y., Kaewtatip, K., Suybangdum, P. & Sopajarn, A. (2020). Biodegradable plates made of pineapple leaf pulp with biocoatings to improve water resistance. Journal of Materials Research and Technology, 9(3), 5056–5066. https://doi.org/10.1016/j.jmrt.2020.03.023

  37. Jarabo, R., Monte, M. C., Fuente, E., Santos, S. F. & Negro, C. (2013). Corn stalk from agricultural residue used as reinforcement fiber in fiber-cement production. Industrial Crops and Products, 43, 832–839. https://doi.org/10.1016/J. INDCROP.2012.08.034

  38. Jeetah, P. & Jaffur, N. (2021). Coconut husk, a lignocellulosic biomass, as a promising engineering material for non-wood paper production. Journal of Natural Fibers, 1–15. https:// doi.org/10.1080/15440478.2021.1889428

  39. Jesús Díaz, L. G. (2020). Obtención y evaluación de la pulpa para papel del endocarpio del fruto de Mauritia flexuosa (Aguaje). Universidad Nacional de Ucayali. Retrieved from http://repositorio.unu.edu.pe/bitstream/handle/ UNU/4325/UNU_FORESTAL_2020_T_LIANA-JESUS. pdf?sequence=1&isAllowed=y

  40. Jiang, J., Cen, H., Zhang, C., Lyu, X., Weng, H., Xu, H. & He, Y. (2018). Nondestructive quality assessment of chili peppers using near-infrared hyperspectral imaging combined with multivariate analysis. Postharvest Biology and Technology, 146, 147–154. https://doi.org/10.1016/j. postharvbio.2018.09.003

  41. Jirukkakul, N. (2018). Physical properties of banana stem and leaf papers laminated with banana film. Walailak Journal of Science and Technology (WJST), 16(10), 753–763. https:// doi.org/10.48048/wjst.2019.3471

  42. Juliano, M. A. L. & Tayo, L. L. (2020). Utilization of pandan leaf fibers (Pandanus simplex merr.) for the production of paper. IOP Conference Series: Earth and Environmental Science, 563(1). https://doi.org/10.1088/1755-1315/563/1/012012

  43. Kabir, M. M., Wang, H., Lau, K. T. & Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, 43(7), 2883–2892. https://doi.org/10.1016/j. compositesb.2012.04.053

  44. Kumar, A. & Sharma, S. (2008). An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): A review. Industrial Crops and Products, 28(1), 1–10. https:// doi.org/10.1016/J.INDCROP.2008.01.001

  45. Lavoine, N., Desloges, I., Dufresne, A. & Bras, J. (2012). Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers, 90(2), 735–764. https://doi.org/10.1016/J. CARBPOL.2012.05.026

  46. Lee, S. K. & Kader, A. A. (2000). Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology, 20(3), 207–220. https://doi.org/10.1016/S0925-5214(00)00133-2

  47. Lim, B. Y., Shamsudin, R., Baharudin, B. T. H. T. & Yunus, R. (2015). A review of processing and machinery for Jatropha curcas L. fruits and seeds in biodiesel production: Harvesting, shelling, pretreatment and storage. Renewable and Sustainable Energy Reviews, 52, 991–1002. https:// doi.org/10.1016/J.RSER.2015.07.077

  48. Liu, C., Wang, X., Lin, F., Zhang, H. & Xiao, R. (2018). Structural elucidation of industrial bioethanol residual lignin from corn stalk: A potential source of vinyl phenolics. Fuel Processing Technology, 169, 50–57. https://doi. org/10.1016/j.fuproc.2017.09.008

  49. Liu, Y., Xie, J., Wu, N., Ma, Y., Menon, C. & Tong, J. (2019). Characterization of natural cellulose fiber from corn stalk waste subjected to different surface treatments. Cellulose, 26(8), 4707–4719. https://doi.org/10.1007/s10570-019- 02429-6

  50. Lufu, R., Ambaw, A. & Opara, U. L. (2020). Water loss of fresh fruit: Influencing pre-harvest, harvest and postharvest factors. Scientia Horticulturae, 272(2020), 109519. https:// doi.org/10.1016/j.scienta.2020.109519

  51. Luo, Z., Li, P., Cai, D., Chen, Q., Qin, P., Tan, T. & Cao, H. (2017). Comparison of performances of corn fiber plastic composites made from different parts of corn stalk. Industrial Crops and Products, 95, 521–527. https://doi. org/10.1016/j.indcrop.2016.11.005

  52. Macheka, L., Spelt, E., van der Vorst, J. G. A. J. & Luning, P. A. (2017). Exploration of logistics and quality control activities in view of context characteristics and postharvest losses in fresh produce chains: A case study for tomatoes. Food Control, 77, 221–234. https://doi.org/10.1016/J. FOODCONT.2017.02.037

  53. Martínez, S., Curros, A., Bermúdez, J., Carballo, J. & Franco, I. (2007). The composition of Arnoia peppers (Capsicum annuum L.) at different stages of maturity. International Journal of Food Sciences and Nutrition, 58(2), 150–161. https://doi.org/10.1080/09637480601154095

  54. Mazumdar, P., Singh, P., Babu, S., Siva, R. & Harikrishna, J. A. (2018). An update on biological advancement of Jatropha curcas L.: New insight and challenges. Renewable and Sustainable Energy Reviews, 91, 903–917. https://doi. org/10.1016/J.RSER.2018.04.082

  55. Mengual, I. (2016). Papeles, efectos y manipulados. Retrieved from http://umh2127.edu.umh.es/wp-content/uploads/ sites/906/2016/10/7.1.-Papeles-efectos-manipulados-.pdf

  56. Miranda-Molina, F. D., Valle-Guadarrama, S., Guerra-Ramírez, D., Arévalo-Galarza, M. D. L., Pérez-Grajales, M. & Artés- Hernández, F. (2019). Quality attributes and antioxidant properties of Serrano chili peppers (Capsicum annuum L.) affected by thermal conditions postharvest. International Food Research Journal, 26(2), 1889–1898.

  57. Monsalve, D. M. O., Velásquez, H. J. C. & Tórres, I. D. A. (2007). Determinación de la fuerza de la fractura superficial y fuerza de firmeza en frutas de lulo (Solanum quitoense x Solanum hirtum). Revista Facultad Nacional de Agronomía Medellín, 60(2), 4163–4178.

  58. Nair, M. S., Saxena, A. & Kaur, C. (2018). Characterization and antifungal activity of pomegranate peel extract and its use in polysaccharide-based edible coatings to extend the shelf-life of capsicum (Capsicum annuum L.). Food and Bioprocess Technology, 11(7), 1317–1327. https://doi. org/10.1007/s11947-018-2101-x

  59. NMX-N-001-SCFI. (2011). Industrias de celulosa y papel – Determinación del gramaje o peso base del papel, cartoncillo y cartón (peso por unidad de área) – Método de prueba (Cancela a la NMX-N-001-SCFI-2005). Retrieved from http://www.economia-nmx.gob.mx/normas/nmx/2010/ nmx-n-001-scfi11.pdf

  60. NMX-N-016-SCFI. (2011). Industrias de celulosa y papel- Determinación de humedad de papeles y cartones por secado en estufa – Método de prueba. Retrieved from http://www.economia-nmx.gob.mx/normas/nmx/2010/ nmx-n-016-scfi11.pdf

  61. NMX-N-098-SCFI. (2014). Industrias de celulosa y papel – Determinación de la absorción de agua por el papel medium mediante la absorción de la gota-Método de prueba. Retrieved from http://www.economia-nmx.gob. mx/normas/nmx/2010/nmx-n-098-scfi-2014.pdf

  62. Odetoye, T. E., Afolabi, T. J., Abu Bakar, M. S. & Titiloye, J. O. (2018). Thermochemical characterization of Nigerian Jatropha curcas fruit and seed residues for biofuel production. Energy, Ecology and Environment, 3(6), 330–337. https://doi.org/10.1007/s40974-018-0104-0

  63. Ortiz, H. G. (2013). Efectos del acolchado plástico y la fertilización química y biológica sobre la calidad y vida de anaquel de pimiento, asistida con recubrimiento biodegradable de poliacetato de vinilo-alcohol polivinílico. Tesis de Maestría. México. Centro de Investigación en Química Aplicada, 154. Retrieved from https://ciqa. repositorioinstitucional.mx/jspui/handle/1025/37

  64. Pandey, V. C., Singh, K., Singh, J. S., Kumar, A., Singh, B. & Singh, R. P. (2012). Jatropha curcas: A potential biofuel plant for sustainable environmental development. Renewable and Sustainable Energy Reviews, 16, 2870–2883. https://doi. org/10.1016/j.rser.2012.02.004

  65. Panigrahi, J., Gheewala, B., Patel, M., Patel, N. & Gantait, S. (2017). Gibberellic acid coating: A novel approach to expand the shelf-life in green chilli (Capsicum annuum L.). Scientia Horticulturae, 225(April), 581–588. https:// doi.org/10.1016/j.scienta.2017.07.059

  66. Pechanova, O. & Pechan, T. (2017). Proteomics as a tool to understand maize biology and to improve maize crop. Chapter 3. In M. L. Colgrove (Ed.). Proteomics in Food Science: from farm to fork, Academic Press, 35–56, Berlin. https://doi.org/10.1016/B978-0-12-804007-2.00003-5

  67. Porat, R., Lichter, A., Terry, L. A., Harker, R. & Buzby, J. (2018). Postharvest losses of fruit and vegetables during retail and in consumers’ homes: Quantifications, causes, and means of prevention. Postharvest Biology and Technology, 139, 135– 149. https://doi.org/10.1016/j.postharvbio.2017.11.019

  68. Quiroz, J. A. (2016). Dinámica de la pérdida de peso en hortalizas de hoja durante el almacenamiento. Universidad de Costa Rica. Retrieved from http://www.ingbiosistemas.ucr.ac.cr/ wp-content/uploads/2016/09/Tesis_Dinamica_perdida_ peso_hojas.pdf

  69. Rao, T. V. R., Gol, N. B. & Shah, K. K. (2011). Effect of postharvest treatments and storage temperatures on the quality and shelf life of sweet pepper (Capsicum annum L.). Scientia Horticulturae, 132(1), 18–26. https://doi. org/10.1016/j.scienta.2011.09.032

  70. Rios Padilla, A. D. (2017). Producción de papel artesanal a partir de residuos de cáscaras de naranja de las juguerias del Mercado Tahuantinsuyo-Independencia, 2017. Universidad César Vallejo.

  71. Samyn, P. (2013). Wetting and hydrophobic modification of cellulose surfaces for paper applications. Journal of Materials Science, 48(19), 6455–6498. https://doi. org/10.1007/s10853-013-7519-y

  72. Sapei, L. & Hwa, L. (2014). Study on the kinetics of vitamin C degradation in fresh strawberry juices. Procedia Chemistry, 9, 62–68. https://doi.org/10.1016/j.proche.2014.05.008

  73. Sethi, J., Oksman, K., Illikainen, M. & Sirviö, J. A. (2018). Sonication-assisted surface modification method to expedite the water removal from cellulose nanofibers for use in nanopapers and paper making. Carbohydrate Polymers, 197, 92–99. https://doi.org/10.1016/J.CARBPOL.2018.05.072

  74. Shin, Y., Ryu, J. A., Liu, R. H., Nock, J. F., Polar-Cabrera, K. & Watkins, C. B. (2008). Fruit quality, antioxidant contents and activity, and antiproliferative activity of strawberry fruit stored in elevated CO2 atmospheres. Journal of Food Science, 73(6), S339–S344. https://doi.org/10.1111/j.1750- 3841.2008.00857.x

  75. Singh, R., Giri, S. K. & Kotwaliwale, N. (2014). Shelf-life enhancement of green bell pepper (Capsicum annuum L.) under active modified atmosphere storage. Food Packaging and Shelf Life, 1(2), 101–112. https://doi.org/10.1016/j. fpsl.2014.03.001

  76. Smith, D. L., Stommel, J. R., Fung, R. W. M., Wang, C. Y. & Whitaker, B. D. (2006). Influence of cultivar and harvest method on postharvest storage quality of pepper (Capsicum annuum L.) fruit. Postharvest Biology and Technology, 42(3), 243–247. https://doi.org/10.1016/j. postharvbio.2006.06.013

  77. Solís-Marroquín, D., Lecona-Guzmán, C. A., Ruiz-Lau, N., Ocampo, P., Rodas-Trejo, J., Gonzales-Santiago, C., González-Mejía, O. & Gordillo-Páez, L. (2017). Análisis bromatológico de frutos de chile “siete caldos” (Capsicum annuum) cultivados en condiciones de cielo abierto y casa sombra. Agro productividad, 10(9), 34–40. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=f ap&AN=126130458&site=ehost-live

  78. Sousa-Gallagher, M. J., Mahajan, P. V. & Mezdad, T. (2013). Engineering packaging design accounting for transpiration rate: Model development and validation with strawberries. Journal of Food Engineering, 119(2), 370–376. https://doi. org/10.1016/j.jfoodeng.2013.05.041

  79. Toledo, M. E. A., Ueda, Y., Imahori, Y. & Ayaki, M. (2003). L-ascorbic acid metabolism in spinach (Spinacia oleracea L.) during postharvest storage in light and dark. Postharvest Biology and Technology, 28(1), 47–57. https://doi. org/10.1016/S0925-5214(02)00121-7

  80. Torres, M. A. (2019). Obtención de celulosa a partir de la cáscara de cacao ecuatoriano (Theobroma cacao L.) mediante hidrólisis térmica para la elaboración de pulpa de papel. Universidad Central Del Ecuador.

  81. Treviño, J., Hernández, T. & Caballero, R. (2011). Estudio del valor nutritivo de las hojas y tallo del maíz híbrido de tallo azucarado E-10. Instituto de Alimentación y Productividad Animal (C.S.I.C).

  82. Tsegay, D., Tesfaye, B., Mohammed, A. & Yirga, H. (2013). Effects of harvesting stage and storage duration on postharvest quality and shelf life of sweet bell pepper (Capsicum annuum L.) varieties under passive refrigeration system. International Journal of Biotechnology and Molecular Biology Research, 4(7), 98–104.

  83. Vaithanomsat, P., Kongsin, K., Trakunjae, C., Boonyarit, J., Jarerat, A., Sudesh, K. & Chollakup, R. (2021). Biosynthesized poly(3-Hydroxybutyrate) on Coated pineapple leaf fiber papers for biodegradable packaging application. Polymers, 13(11), 1733. https://doi. org/10.3390/polym13111733

  84. Valiathan, S. & Athmaselvi, K. A. (2018). Gum arabic based composite edible coating on green chillies. International Agrophysics, 32(2), 193–202. https://doi.org/10.1515/ intag-2017-0003

  85. Villa-Ruano, N., Ramírez-Meraz, M., Méndez-Aguilar, R., Zepeda-Vallejo, L. G., Álvarez-Bravo, A., Pérez-Hernández, N. & Becerra-Martínez, E. (2019). 1H NMR-based metabolomics profiling of ten new races from Capsicum annuum cv. serrano produced in Mexico. Food Research International, 119, 785–792. https://doi.org/10.1016/j. foodres.2018.10.061

  86. Villarreal Jiménez, L. A. (2004). Uso de lodo de papel y arena sílica para la fabricación de ladrillos y tabla roca. Universidad de las Américas Puebla.

  87. Wang, Q. J., Mielby, L. A., Junge, J. Y., Bertelsen, A. S., Kidmose, U., Spence, C. & Byrne, D. V. (2019). The role of intrinsic and extrinsic sensory factors in sweetness perception of food and beverages: A review. Foods, 8, 211. https://doi. org/10.3390/foods8060211

  88. Xavier, A. A. O. & Pérez-Gálvez, A. (2016). Peppers and Chilies. Encyclopedia of Food and Health, 301–306. https://doi. org/10.1016/B978-0-12-384947-2.00533-X

  89. Xia, F., Liu, H., Lu, J., Lv, Y., Zhai, S., An, Q., Cheng, Y. & Wang, H. (2019). An integrated biorefinery process to produce butanol and pulp from corn straw. Industrial Crops and Products, 140(2019), 111648. https://doi.org/10.1016/j. indcrop.2019.111648

  90. Xing, Y., Li, X., Xu, Q., Yun, J., Lu, Y. & Tang, Y. (2011). Effects of chitosan coating enriched with cinnamon oil on qualitative properties of sweet pepper (Capsicum annuum L.). Food Chemistry, 124(4), 1443–1450. https://doi.org/10.1016/j. foodchem.2010.07.105

  91. Yousefi, H., Faezipour, M., Hedjazi, S., Mousavi, M. M., Azusa, Y. & Heidari, A. H. (2013). Comparative study of paper and nanopaper properties prepared from bacterial cellulose nanofibers and fibers/ground cellulose nanofibers of canola straw. Industrial Crops and Products, 43(1), 732–737. https://doi.org/10.1016/j.indcrop.2012.08.030




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2021;24