medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2021, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2021; 24 (1)

Animal models in the study of metabolic syndrome

Escalona MJR, Barajas MA, Alfaro BOA, Estrada RF, Ángeles CM, Ubaldo-Reyes LM
Full text How to cite this article

Language: Spanish
References: 75
Page:
PDF size: 217.37 Kb.


Key words:

metabolic syndrome, obesity, diet, carbohydrates, fat, animal models.

ABSTRACT

The term metabolic syndrome refers to a series of risk factors that lead to a metabolic imbalance. There are various causes in the development of metabolic syndrome, among the most prevalent are excessive calorie intake and low physical activity. The resulting imbalance between energy intake and expenditure leads to weigh gain in the form of adipose tissue, which is tightly linked to multiple metabolic anomalies. Metabolic syndrome and its consequences are a public health concern worldwide. Although epidemiologic studies provide ample information regarding the pathogenesis of metabolic syndrome, ethical and methodological concerns make research on animal models necessary. The choice of a particular model requires the careful analysis of the variables or phenomenon to be studied, as multiple animal models of metabolic syndrome are currently available. This review covers general elements of metabolic syndrome. In addition, we discuss basic aspects of the most common murine models, taking into account models induced by high-sugar diets, high-fat diets and genetic models. Particularly for high-fat diet models, other aspects are considered, such as the percentage of kcal from fat, the type of fatty acids included in the diet, as well as multigenerational effects.


REFERENCES

  1. Ahima, R. S. & Flier, J. S. (2000). Leptin. Annual Review of Physiology, 62, 413–437. DOI: 10.1146/annurev. physiol.62.1.413

  2. Akash, M. S., Rehman, K. & Chen, S. (2013). Goto- Kakizaki rats: Its suitability as non-obese diabetic animal model for spontaneous type 2 diabetes mellitus. Current Diabetes Reviews, 9(5), 387–396. DOI: 10.2174/15733998113099990069

  3. Alberti, K. G. & Zimmet, P. Z. (1998). Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabetic Medicine: A Journal of the British Diabetic Association, 15(7), 539–553. DOI: 10.1002/(SICI)1096- 9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S

  4. Alberti, K. G. M. M., Zimmet, P. & Shaw, J. (2006). Metabolic syndrome-a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabetic Medicine, 23(5), 469–480. DOI: 10.1111/j.1464- 5491.2006.01858.x

  5. Arble, D. M., Bass, J., Laposky, A. D., Vitaterna, M. H. & Turek, F. W. (2009). Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring, Md.), 17(11), 2100–2102. DOI: 10.1038/oby.2009.264

  6. Aronis, K. N. & Mantzoros, C. S. (2012). A brief history of insulin resistance: From the first insulin radioimmunoassay to selectively targeting protein kinase C pathways. Metabolism, 61(4), 445–449. DOI: 10.1016/j.metabol.2012.01.001

  7. Bake, T., Morgan, D. G. A. & Mercer, J. G. (2014). Feeding and metabolic consequences of scheduled consumption of large, binge-type meals of high fat diet in the Sprague-Dawley rat. Physiology & Behavior, 128, 70–79. DOI: 10.1016/j. physbeh.2014.01.018

  8. Balogun, K. A. & Cheema, S. K. (2016). Dietary Omega-3 Fatty Acids Prevented Adipocyte Hypertrophy by Downregulating DGAT-2 and FABP-4 in a Sex-Dependent Fashion. Lipids, 51(1), 25–38. DOI: 10.1007/s11745-015-4105-x

  9. Benchoula, K., Khatib, A., Jaffar, A., Ahmed, Q. U., Sulaiman, W. M. A. W., Wahab, R. A. & El-Seedi, H. R. (2019). The promise of zebrafish as a model of metabolic syndrome. Experimental Animals, 68(4), 407–416. DOI: 10.1538/ expanim.18-0168

  10. Booth, J. (1977). A short history of blood pressure measurement. Proceedings of the Royal Society of Medicine, 70(11), 793–799. Recuperado de https://www.ncbi.nlm.nih.gov/ pmc/articles/PMC1543468/

  11. Brown, A. E. & Walker, M. (2016). Genetics of Insulin Resistance and the Metabolic Syndrome. Current Cardiology Reports, 18(8), 75. DOI: 10.1007/s11886-016-0755-4

  12. Buettner, R., Parhofer, K. G., Woenckhaus, M., Wrede, C. E., Kunz-Schughart, L. A., Schölmerich, J. & Bollheimer, L. C. (2006). Defining high-fat-diet rat models: Metabolic and molecular effects of different fat types. Journal of Molecular Endocrinology, 36(3), 485–501. DOI: 10.1677/ jme.1.01909 12. Cao, W., Liu, H.-Y., Hong, T. & Liu, Z. (2010). Excess exposure to insulin may be the primary cause of insulin resistance. American Journal of Physiology. Endocrinology and Metabolism, 298(2), E372. DOI: 10.1152/ajpendo.00677.2009

  13. Clayton, J. A. & Collins, F. S. (2014). Policy: NIH to balance sex in cell and animal studies. Nature, 509(7500), 282–283. DOI: 10.1038/509282a

  14. Colchero, M. A., Popkin, B. M., Rivera, J. A. & Ng, S. W. (2016). Beverage purchases from stores in Mexico under the excise tax on sugar sweetened beverages: Observational study. BMJ (Clinical research ed.), 352, h6704. DOI: 10.1136/bmj.h6704

  15. Crinò, A., Fintini, D., Bocchini, S. & Grugni, G. (2018). Obesity management in Prader-Willi syndrome: Current perspectives. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 11, 579–593. DOI: 10.2147/DMSO. S141352

  16. Dawber, T. R., Moore, F. E. & Mann, G. V. (1957). Coronary heart disease in the Framingham study. American Journal of Public Health and the Nation’s Health, 47(4 Pt 2), 4–24. DOI: 10.2105/ajph.47.4_pt_2.4

  17. Dhillon, J., Lee, J. Y. & Mattes, R. D. (2017). The cephalic phase insulin response to nutritive and low-calorie sweeteners in solid and beverage form. Physiology & Behavior, 181, 100–109. DOI: 10.1016/j.physbeh.2017.09.009

  18. Díaz-Urbina, D., Escartín-Pérez, R. E., López-Alonso, V. E. & Mancilla-Díaz, J. M. (2018). Efectos de una dieta con alto contenido de grasas sobre patrones conductuales alimentarios. Acta Colombiana de Psicología, 21(1), 95–115. DOI: 10.14718/ACP.2018.21.1.5

  19. DiMeglio, D. P. & Mattes, R. D. (2000). Liquid versus solid carbohydrate: Effects on food intake and body weight. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity, 24(6), 794–800. DOI: 10.1038/ sj.ijo.0801229

  20. Dong, Y. F., Liu, L., Kataoka, K., Nakamura, T., Fukuda, M., Tokutomi, Y., Nako, H., Ogawa, H. & Kim-Mitsuyama, S. (2010). Aliskiren prevents cardiovascular complications and pancreatic injury in a mouse model of obesity and type 2 diabetes. Diabetologia, 53(1), 180–191. DOI: 10.1007/ s00125-009-1575-5

  21. Eknoyan, G. (2007). Adolphe Quetelet (1796 1874) the average man and indices of obesity. Nephrology Dialysis Transplantation, 23(1), 47–51. DOI: 10.1093/ndt/gfm517

  22. Engin, A. B. (2017). What Is Lipotoxicity? En A. B. Engin & A. Engin (Eds.), Obesity and Lipotoxicity (pp. 197–220). Cham: Springer International Publishing. DOI: 10.1007/978-3- 319-48382-5_8

  23. Enzi, G., Busetto, L., Inelmen, E. M., Coin, A. & Sergi, G. (2003). Historical perspective: Visceral obesity and related comorbidity in Joannes Baptista Morgagni’s “De sedibus et causis morborum per anatomen indagata”. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity, 27(4), 534–535. DOI: 10.1038/sj.ijo.0802268

  24. Espinosa Brito, A. (2018). Hipertensión arterial: Cifras para definirla al comenzar 2018. Revista Finlay, 8(1), 66–74. Recuperado de http://scielo.sld.cu/scielo.php?script=sci_ abstract&pid=S2221-24342018000100008&lng=es&nr m=iso&tlng=es

  25. Gancheva, S., Zhelyazkova-Savova, M., Galunska, B. & Chervenkov, T. (2015). Experimental models of metabolic syndrome in rats. Scripta Scientifica Medica, 47(2), 14–21. DOI: 10.14748/ssm.v47i2.1145

  26. García-Escobar, E., Monastero, R., García-Serrano, S., Gómez- Zumaquero, J. M., Lago-Sampedro, A., Rubio-Martín, E., Colomo, N., Rodríguez-Pacheco, F., Soriguer, F. & Rojo- Martínez, G. (2017). Dietary fatty acids modulate adipocyte TNFa production via regulation of its DNA promoter methylation levels. The Journal of Nutritional Biochemistry, 47, 106–112. DOI: 10.1016/j.jnutbio.2017.05.006

  27. Gonzalez, E., Flier, E., Molle, D., Accili, D. & McGraw, T. E. (2011). Hyperinsulinemia leads to uncoupled insulin regulation of the GLUT4 glucose transporter and the FoxO1 transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 108(25), 10162–10167. DOI: 10.1073/pnas.1019268108

  28. Guo, H., Liu, D., Ma, Y., Liu, J., Wang, Y., Du, Z., Wang, X., Shen, J. & Peng, H. (2009). Long-term baicalin administration ameliorates metabolic disorders and hepatic steatosis in rats given a high-fat diet. Acta Pharmacologica Sinica, 30(11), 1505–1512. DOI: 10.1038/aps.2009.150

  29. Haller, H. (1977). [Epidermiology and associated risk factors of hyperlipoproteinemia]. Zeitschrift fur die gesamte innere Medizin und ihre Grenzgebiete, 32(8), 124–128.

  30. Hattori, T., Murase, T., Ohtake, M., Inoue, T., Tsukamoto, H., Takatsu, M., Kato, Y., Hashimoto, K., Murohara, T. & Nagata, K. (2011). Characterization of a new animal model of metabolic syndrome: The DahlS.Z-Lepr(fa)/ Lepr(fa) rat. Nutrition & Diabetes, 1, e1. DOI: 10.1038/ nutd.2010.1

  31. Heydemann, A. (2016). An Overview of Murine High Fat Diet as a Model for Type 2 Diabetes Mellitus. Journal of Diabetes Research, 2016, 2902351. DOI: 10.1155/2016/2902351

  32. Hollis, J. H. (2018). The effect of mastication on food intake, satiety and body weight. Physiology & Behavior, 193(Pt B), 242–245. DOI: 10.1016/j.physbeh.2018.04.027

  33. Horne, R. G., Yu, Y., Zhang, R., Abdalqadir, N., Rossi, L., Surette, M., Sherman, P. M. & Adeli, K. (2020). High Fat- High Fructose Diet-Induced Changes in the Gut Microbiota Associated with Dyslipidemia in Syrian Hamsters. Nutrients, 12(11). DOI: 10.3390/nu12113557

  34. Hu, S., Wang, L., Yang, D., Li, L., Togo, J., Wu, Y., Liu, Q., Li, B., Li, M., Wang, G., Zhang, X., Niu, C., Li, J., Xu, Y., Couper, E., Whittington-Davies, A., Mazadi, M., Luo, L., Whang, S., Douglas, A. & Speakman, JR. (2018). Dietary Fat, but Not Protein or Carbohydrate, Regulates Energy Intake and Causes Adiposity in Mice. Cell metabolism, 28(3), 415-431.e4. DOI: 10.1016/j.cmet.2018.06.010

  35. Ishimoto, T., Lanaspa, M. A., Rivard, C. J., Roncal-Jimenez, C. A., Orlicky, D. J., Cicerchi, C., McMahan, R H., Abdelmalek, M. F., Rosen, H. R., Jackman, M. R., MacLean, P. S., Diggle, C. P., Asipu, A., Inaba S., Kosugi, T., Sato, W., Marumaya, S., Sánchez-Lozada, L. G., Sautin, Y. Y., Hill, J. O., Bonthron, D. T. & Johnson, R. J. (2013). High-fat and high-sucrose (western) diet induces steatohepatitis that is dependent on fructokinase. Hepatology (Baltimore, Md.), 58(5), 1632–1643. DOI: 10.1002/hep.26594

  36. Johnson, A. M. F. & Olefsky, J. M. (2013). The origins and drivers of insulin resistance. Cell, 152(4), 673–684. DOI: 10.1016/j.cell.2013.01.041

  37. Kim, S. P., Ellmerer, M., Van Citters, G. W. & Bergman, R. N. (2003). Primacy of hepatic insulin resistance in the development of the metabolic syndrome induced by an isocaloric moderate-fat diet in the dog. Diabetes, 52(10), 2453–2460. DOI: 10.2337/diabetes.52.10.2453

  38. Kirk, S. L., Samuelsson, A.-M., Argenton, M., Dhonye, H., Kalamatianos, T., Poston, L., Taylor, P. D. & Coen, C. W. (2009). Maternal obesity induced by diet in rats permanently influences central processes regulating food intake in offspring. PloS One, 4(6), e5870. DOI: 10.1371/journal. pone.0005870

  39. Kleinert, M., Clemmensen, C., Hofmann, S. M., Moore, M. C., Renner, S., Woods, S. C., Huypens, P., Beckers, J., de Angelis, M. H., Schürmann, A., Bakhti, M., Klingenspor, M., Heiman, M., Cherrington, A. D., Ristow, M., Lickert, H., Wolf, E., Havel, P. J., Müller, T. D. & Tschöp, M. H. (2018). Animal models of obesity and diabetes mellitus. Nature Reviews. Endocrinology, 14(3), 140–162. DOI: 10.1038/nrendo.2017.161

  40. Korntner, S., Kunkel, N., Lehner, C., Gehwolf, R., Wagner, A., Augat, P., Stephan, D., Heu, V., Bauer, H.-C., Traweger, A. & Tempfer, H. (2017). A high-glucose diet affects Achilles tendon healing in rats. Scientific Reports, 7(1), 780. DOI: 10.1038/s41598-017-00700-z

  41. Kurita, Y., Ohki, T., Soejima, E., Yuan, X., Kakino, S., Wada, N., Hashinaga, T., Nakayama, H., Tani, J., Tajiri, Y., Hiromatsu, Y., Yamada, K. & Nomura, M. (2019). A High- Fat/High-Sucrose Diet Induces WNT4 Expression in Mouse Pancreatic β-cells. The Kurume Medical Journal, 65(2), 55–62. DOI: 10.2739/kurumemedj.MS652008

  42. Kurtz, T. W., Morris, R. C. & Pershadsingh, H. A. (1989). The Zucker fatty rat as a genetic model of obesity and hypertension. Hypertension (Dallas, Tex.: 1979), 13(6 Pt 2), 896–901. DOI: 10.1161/01.hyp.13.6.896

  43. Larqué, C., Velasco, M., Navarro-Tableros, V., Duhne, M., Aguirre, J., Gutiérrez-Reyes, G., Moreno, J., Robles-Diaz, G., Hong, E. & Hiriart, M. (2011). Early endocrine and molecular changes in metabolic syndrome models. IUBMB Life, 63(10), 831–839. DOI: 10.1002/iub.544

  44. Li, L., Liao, G., Yang, G., Lu, Y., Du, X., Liu, J., Li, L., Wang, C., Li, L., Ren, Y., Zhong, Z., Cheng, J. & Chen, Y. (2015). Highfat diet combined with low-dose streptozotocin injections induces metabolic syndrome in Macaca mulatta. Endocrine, 49(3), 659–668. DOI: 10.1007/s12020-015-0542-9

  45. Lima, M. L. R. P., Leite, L. H. R., Gioda, C. R., Leme, F. O. P., Couto, C. A., Coimbra, C. C., Leite, V. H. R. & Ferrari, T. C. A. (2016). A Novel Wistar Rat Model of Obesity-Related Nonalcoholic Fatty Liver Disease Induced by Sucrose-Rich Diet. Journal of Diabetes Research, 2016, 9127076. DOI: 10.1155/2016/9127076

  46. Lozano, W. M., Arias-Mutis, O. J., Calvo, C. J., Chorro, F. J. & Zarzoso, M. (2019). Diet-Induced Rabbit Models for the Study of Metabolic Syndrome. Animals: An Open Access Journal from MDPI, 9(7), E463. DOI: 10.3390/ani9070463

  47. Mach, F., Baigent, C., Catapano, A. L., Koskinas, K. C., Casula, M., Badimon, L., Chapman, M. J., De Backer, G. G., Delgado, V., Ference, B. A., Graham, I. M., Halliday, A., Landmesser, U., Mihaylova, B., Pedersen, T. R., Riccardi, G., Richter, D. J., Sabatine, M. S., Taskinen, M.- R., Tokgozoglu, L. & Wiklund, O. (2020). ESC Scientific Document Group (2020). 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. European Heart Journal, 41(1), 111-118. DOI: 10.1093/eurheartj/ehz455

  48. Maekawa, F., Fujiwara, K., Kohno, D., Kuramochi, M., Kurita, H. & Yada, T. (2006). Young adult-specific hyperphagia in diabetic Goto-kakizaki rats is associated with leptin resistance and elevation of neuropeptide Y mRNA in the arcuate nucleus. Journal of Neuroendocrinology, 18(10), 748–756. DOI: 10.1111/j.1365-2826.2006.01470.x

  49. Mamikutty, N., Thent, Z. C., Sapri, S. R., Sahruddin, N. N., Mohd Yusof, M. R. & Haji Suhaimi, F. (2014). The establishment of metabolic syndrome model by induction of fructose drinking water in male Wistar rats. BioMed Research International, 2014, 263897. DOI: 10.1155/2014/263897

  50. Mašek, T., Barišić, J., Micek, V. & Starčević, K. (2020). Cafeteria Diet and High-Fructose Rodent Models of NAFLD Differ in the Metabolism of Important PUFA and Palmitoleic Acid without Additional Influence of Sex. Nutrients, 12(11), E3339. DOI: 10.3390/nu12113339

  51. Mauvais-Jarvis, F., Arnold, A. P. & Reue, K. (2017). A Guide for the Design of Pre-clinical Studies on Sex Differences in Metabolism. Cell Metabolism, 25(6), 1216–1230. DOI: 10.1016/j.cmet.2017.04.033

  52. Minton, J. a. L., Owen, K. R., Ricketts, C. J., Crabtree, N., Shaikh, G., Ehtisham, S., Porter, J. R., Carey, C., Hodge, D., Paisey, R., Walker, M. & Barrett, T. G. (2006). Syndromic obesity and diabetes: Changes in body composition with age and mutation analysis of ALMS1 in 12 United Kingdom kindreds with Alstrom syndrome. The Journal of Clinical Endocrinology and Metabolism, 91(8), 3110–3116. DOI: 10.1210/jc.2005-2633

  53. Moreno-Fernández, S., Garcés-Rimón, M., Vera, G., Astier, J., Landrier, J. F. & Miguel, M. (2018). High Fat/High Glucose Diet Induces Metabolic Syndrome in an Experimental Rat Model. Nutrients, 10(10). DOI: 10.3390/nu10101502

  54. O’Neill, S., Bohl, M., Gregersen, S., Hermansen, K. & O’Driscoll, L. (2016). Blood-Based Biomarkers for Metabolic Syndrome. Trends in Endocrinology & Metabolism, 27(6), 363–374. DOI: 10.1016/J.TEM.2016.03.012 . Pucci, G., Alcidi, R., Tap, L., Battista, F., Mattace-Raso, F. & Schillaci, G. (2017). Sex- and gender-related prevalence, cardiovascular risk and therapeutic approach in metabolic syndrome: A review of the literature. Pharmacological Research, 120, 34–42. DOI: 10.1016/j.phrs.2017.03.008

  55. Qi, Y., Xu, Z., Zhu, Q., Thomas, C., Kumar, R., Feng, H., Dostal, D. E., White, M. F., Baker, K. M. & Guo, S. (2013). Myocardial loss of IRS1 and IRS2 causes heart failure and is controlled by p38α MAPK during insulin resistance. Diabetes, 62(11), 3887–3900. DOI: 10.2337/db13-0095

  56. Reaven, G. M. (1988). Banting lecture 1988. Role of insulin resistance in human disease. Diabetes, 37(12), 1595–1607. DOI: 10.2337/diab.37.12.1595

  57. Rössner, S. (2009). Eskil Kylin (1889-1975). Obesity Reviews, 10(3), 362–362. doi: 10.1111/j.1467-789X.2008.00531.x

  58. Saklayen, M. G. (2018). The Global Epidemic of the Metabolic Syndrome. Current Hypertension Reports, 20(2), 12. DOI: 10.1007/s11906-018-0812-z

  59. Schaefer, E. J., Tsunoda, F., Diffenderfer, M., Polisecki, E., Thai, N. & Asztalos, B. (2000). The Measurement of Lipids, Lipoproteins, Apolipoproteins, Fatty Acids, and Sterols, and Next Generation Sequencing for the Diagnosis and Treatment of Lipid Disorders. En K. R. Feingold, B. Anawalt, A. Boyce, G. Chrousos, W. W. de Herder, K. Dhatariya, K. Dungan, A. Grossman, J. M. Hershman, J. Hofland, S. Kalra, G. Kaltsas, C. Koch, P. Kopp, M. Korbonits, C. S. Kovacs, W. Kuohung, B. Laferrére, E. A. McGee, R. McLachlan, J. E. Morley, M. New, J. Purnell, R. Sahay, F. Singer, C. A. Stratakis, D. L. Trence, D. P. Wilson (Eds.), Endotext. South Dartmouth (MA): MDText.com, Inc. http://www.ncbi.nlm.nih.gov/books/NBK355892/

  60. Shin, S. & Ajuwon, K. M. (2018). Effects of Diets Differing in Composition of 18-C Fatty Acids on Adipose Tissue Thermogenic Gene Expression in Mice Fed High-Fat Diets. Nutrients, 10(2), E256. DOI: 10.3390/nu10020256

  61. Small, L., Brandon, A. E., Turner, N. & Cooney, G. J. (2018). Modeling insulin resistance in rodents by alterations in diet: What have high-fat and high-calorie diets revealed? American Journal of Physiology. Endocrinology and Metabolism, 314(3), E251–E265. DOI: 10.1152/ ajpendo.00337.2017

  62. Souza Cruz, E. M., Bitencourt de Morais, J. M., Dalto da Rosa, C. V., da Silva Simões, M., Comar, J. F., de Almeida Chuffa, L. G. & Seiva, F. R. F. (2020). Long-term sucrose solution consumption causes metabolic alterations and affects hepatic oxidative stress in Wistar rats. Biology Open, 9(3). DOI: 10.1242/bio.047282

  63. Speakman, J. R. (2019). Use of high-fat diets to study rodent obesity as a model of human obesity. International Journal of Obesity (2005), 43(8), 1491–1492. doi: 10.1038/s41366- 019-0363-7

  64. Stemmer, K., Perez-Tilve, D., Ananthakrishnan, G., Bort, A., Seeley, R. J., Tschöp, M. H., Dietrich, D. R. & Pfluger, P. T. (2012). High-fat-diet-induced obesity causes an inflammatory and tumor-promoting microenvironment in the rat kidney. Disease models & mechanisms, 5(5), 627–635. DOI: 10.1242/dmm.009407

  65. Suman, R. K., Ray Mohanty, I., Borde, M. K., Maheshwari, U. & Deshmukh, Y. A. (2016). Development of an Experimental Model of Diabetes Co-Existing with Metabolic Syndrome in Rats. Advances in Pharmacological Sciences, 2016, 9463476. DOI: 10.1155/2016/9463476

  66. THE POUND MOUSE | Charles River Laboratories. (s/f). https://www.criver.com/products-services/find-model/ pound-mouse?region=3616

  67. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) Final Report. (2002). Circulation, 106(25), 3143–3143. DOI: 10.1161/circ.106.25.3143

  68. Vague, J. (1956). The degree of masculine differentiation of obesities: A factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. The American Journal of Clinical Nutrition, 4(1), 20–34. DOI: 10.1093/ajcn/4.1.20

  69. Velasco, M., Ortiz-Huidobro, R. I., Larqué, C., Sánchez- Zamora, Y. I., Romo-Yáñez, J. & Hiriart, M. (2020). Sexual dimorphism in insulin resistance in a metabolic syndrome rat model. Endocrine Connections, 9(9), 890–902. DOI: 10.1530/EC-20-0288

  70. Wolfe, R. R., Klein, S., Carraro, F. & Weber, J. M. (1990). Role of triglyceride-fatty acid cycle in controlling fat metabolism in humans during and after exercise. The American Journal of Physiology, 258(2 Pt 1), E382-389. DOI: 10.1152/ ajpendo.1990.258.2.E382

  71. Wong, S. K., Chin, K.-Y., Suhaimi, F. H., Fairus, A. & Ima- Nirwana, S. (2016). Animal models of metabolic syndrome: A review. Nutrition & Metabolism, 13, 65. DOI: 10.1186/ s12986-016-0123-9

  72. Yang, X.-X., Wang, X., Shi, T.-T., Dong, J.-C., Li, F.-J., Zeng, L.- X., Yang, M., Gu, W., Li, J.-P. & Yu, J. (2019). Mitochondrial dysfunction in high-fat diet-induced nonalcoholic fatty liver disease: The alleviating effect and its mechanism of Polygonatum kingianum. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 117, 109083. DOI: 10.1016/j.biopha.2019.109083

  73. Yoon, J.-A., Han, D.-H., Noh, J.-Y., Kim, M.-H., Son, G. H., Kim, K., Kim, C.-J., Pak, Y. K. & Cho, S. (2012). Meal time shift disturbs circadian rhythmicity along with metabolic and behavioral alterations in mice. PloS One, 7(8), e44053. DOI: 10.1371/journal.pone.0044053

  74. Zhang, X. & Lerman, L. O. (2016). Investigating the Metabolic Syndrome: Contributions of Swine Models. Toxicologic Pathology, 44(3), 358–366. DOI: 10.1177/0192623316630835

  75. Zhou, Y., Li, W., Zhou, J., Chen, J., Wang, X., Cai, M., Li, F., Xu, W., Carlsson, P.-O. & Sun, Z. (2019). Lipotoxicity reduces β cell survival through islet stellate cell activation regulated by lipid metabolism-related molecules. Experimental Cell Research, 380(1), 1–8. DOI: 10.1016/j.yexcr.2019.04.012




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2021;24