medigraphic.com
SPANISH

MEDICC Review

ISSN 1527-3172 (Electronic)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2020, Number 3

<< Back Next >>

MEDICC Review 2020; 22 (3)

Antimicrobial Resistance in Bacteria Isolated from Foods in Cuba

Puig-Peña Y, Leyva-Castillo V, Tejedor-Arias R, Illnait-Zaragozí MT, Aportela-López N, Camejo-Jardines A, Ramírez-Areces J
Full text How to cite this article

Language: English
References: 38
Page: 40-45
PDF size: 196.57 Kb.


Key words:

microbial drug resistance, bacteria, food, foodborne disease, Cuba.

ABSTRACT

INTRODUCTION Antimicrobial drug resistance constitutes a health risk of increasing concern worldwide. One of the most common avenues for the acquisition of clinically-relevant antimicrobial resistance can be traced back to the food supply, where resistance is acquired through the ingestion of antimicrobial resistant microorganisms present in food. Antimicrobial resistance constitutes a health risk, leading to production losses and negative consequences for livelihood and food safety.
OBJECTIVE Determine whether resistant bacteria are present in foods in Cuba.
METHODS A descriptive observational study was conducted in the Microbiology Laboratory of Cuba’s National Institute of Hygiene, Epidemiology and Microbiology from September 2004 through December 2018. Researchers analyzed 1178 bacterial isolates from food samples. The isolates were identifi ed as Escherichia coli, Salmonella, Vibrio cholerae and coagulase-positive Staphylococcus. The antimicrobial susceptibility study was performed using the Bauer-Kirby disk diffusion method, following procedures outlined by the Clinical and Laboratory Standards Institute. The data were analyzed using WHONET version 5.6.
RESULTS Of the total isolates, 62.1% were resistant to at least one antibiotic. Within each group, >50% of isolates showed some type of resistance. E. coli and V. cholerae exceeded 50% resistance to tetracycline and ampicillin, respectively. Staphylococcus showed the highest resistance to penicillin, and Salmonella to tetracycline, nalidixic acid and ampicillin. The highest percentages of non-susceptible microorganisms were identifi ed in meats and meat products.
CONCLUSIONS These results serve as an alert to the dangers of acquiring antibiotic-resistant bacteria from food and demonstrate the need to establish a surveillance system and institute measures bacterial control in food products.


REFERENCES

  1. Comisión del Codex Alimentarius. Programa conjunto FAO/OMS Informe de situación sobre la resistencia a los antimicrobianos. 39o período de sesiones, Roma, 6 al13 de junio de 2015. C 2015/28 [Internet]. Rome: Food and Agricultural Organization; World Health Organization; 2015 Feb [cited 2016 Jul 18]. Available at: http://www.fao.org/fao-who-codex alimentarius/sh-proxy/en/?lnk=1&url=https%25 3A%252F%252Fworkspace.fao.org%252Fsite s%252Fcodex%252FMeetings%252FCX-701 -39%252FREPORT%252FREP16_CACs.pdf. Spanish.

  2. VII Taller Nacional del Comisión del Codex Alimentarius. Por una acción integrada frente a la resistencia antimicrobiana, 17 de marzo de 2017 [Internet]. Havana: Pan American Health Organization; 2017 [cited 2018 Jul 18]. Available at: http://www.paho.org/cub/index.php?option=com _docman&view=download&alias=1516-vii-taller -nacional-del-codex-alimentarius&category_slug =articulos-completos-para-web&Itemid=226. Spanish.

  3. Quiñones Pérez D. Resistencia antimicrobiana: evolución y perspectivas actuales ante el enfoque “Una salud”. Rev Cubana Med Trop [Internet]. 2017 [cited 2018 Jul 17];69 (3). Available at: Available at: http://www.revmedtropical.sld .cu/index.php/medtropical/article/view/263/182. Spanish.

  4. Capita R, Alonso-Calleja C. Antibiotic-resistant bacteria: a challenge for the food industry. Crit Rev Food Sci Nutr. 2012 Oct 4 3;53(1):11–48.

  5. European Food Safety Authority; European Center for Disease Prevention and Control. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017. EFSA Journal [Internet]. 2019 [cited 2019 Mar 22];17(2):5598. Available at: https://ecdc.europa .eu/sites/portal/fi les/documents/EU-summary-re port-antimicrobial-resistance-zoonotic-bacteria -humans-animals-2017-web.pdf

  6. De Roda Husman AM, Joakim Larsson DG. Risk assessment and risk management of antimicrobial resistance in the environment [Internet]. Suffolk: AMR Control; 2016 Jul 14 [cited 2020 May 25]. Available at: http://resistancecontrol .info/2016/amr-in-food-water-and-the-environ ment/risk-assessment-and-risk-management-of -antimicrobial-resistance-in-the-environment/

  7. World Health Organization. Integrated surveillance of antimicrobial resistance in foodborne bacteria: application of a one health approach: guidance from the WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance ( AGISAR) [Internet]. Geneva: World Health Organization; 2017 [cited 2018 Jun 11]. Available at: https://apps.who.int/iris/handle/10665/255747

  8. UNE Normalización Española [Internet]. Madrid: UNE Normalización Española; c2020. Normalización. Proyectos. Microbiología de Alimentación Humana y Animal. Método horizontal para la enumeración de Escherichia Coli β-Glucoronidasa positiva. Parte 2: (ISO 16649- 2); 2013 [cited 2020 May 25]. Available at: https:// www.une.org/encuentra-tu-norma/busca-tu-nor ma/proyecto?c=P0036634. Spanish.

  9. UNE Normalización Española [Internet]. Madrid: UNE Normalización Española; c2020. Norma. Microbiología de los alimentos para consumo humano y alimentación animal. Método horizontal para la detección de Salmonella spp. (UNE. EN ISO 6579:2003); 2017 [cited 2020 May 25]. Available at: https://www.une.org/encuentra-tu -norma/busca-tu-norma/norma/?c=N0028651. Spanish.

  10. UNE Normalización Española [Internet]. Madrid: UNE Normalización Española; c2020. Microbiología de los alimentos para consumo humano y alimentación animal. Método horizontal para la enumeración de Staphylococcus coagulasa positiva (Staphylococcuus aureus y otras especies). Parte 1: Técnica Utilizando el Medio agar baird parker (ISO 6888-1); 2003 [cited 2020 May 25]. Available at: https://www.une.org/encuentra -tu-norma/busca-tu-norma/norma?c=N0030548. Spanish.

  11. International Organization for Standardization (ISO). Geneva: International Organization for Standardization; c2020. Store. Microbiology of the food chain -- Horizontal method for the determination of Vibrio spp. Part 1: Detection of potentially enteropathogenic Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnifi cus (ISO 21872- 1:2017); 2017 Jun [cited 2020 May 25]. Available at: https://www.iso.org/standard/74112.html

  12. Contaminantes Microbiológicos en Alimentos NC 585—Requisitos Sanitarios. Havana: Ofi cina Nacional de Normalización (CU); 2017. Spanish.

  13. Clinical and Laboratory Standards Institute (CLSI). M100-S25. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement. Vol 35 No 3. Philadelphia: Clinical and Laboratory Standards Institute (CLSI); 2015 Jan. 243 p.

  14. World Health Organization. WHONET 5.6. Software para la vigilancia de la resistencia antimicrobiana y control de infecciones [Internet]. Geneva: World Health Organization; 2008 [cited 2010 Jul 8]. Available at: http://www.who.int/drug resistance/whonetsoftware/. Spanish.

  15. Pan American Health Organization; Xunta de Galicia Dirección Xeral de Saúde Pública. EPIDAT [Internet]. Washington, D.C.: Pan American Health Organization; [cited 2020 May 25]; [about 4 screens]. Available at: https://www.paho.org/ spanish/sha/epidat.htm. Spanish.

  16. Andersen JL, He GX, Kakarla P, Ranjana KC, Kumar S, Lakra WS, et al. Multidrug effl ux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. Int J Environ Res Public Health. 2015 Jan 27;12(2):1487–547.

  17. Zhu Y, Lai H, Zou L, Yin S, Wang C, Han X, et al. Antimicrobial resistance and resistance genes in Salmonella strains isolated from broiler chickens along the slaughtering process in China. Int Jour Food Microb [Internet]. 2017 Oct 16 [cited 2018 Feb 20];259:43–51. Available at: https://doi .org/10.1016/j.ijfoodmicro.2017.07.023

  18. World Health Organization. Global priority list to guide research, discovery, and development of new antibiotics [Internet]. Geneva: World Health Organization; 2017 [cited 2017 Mar 15]. 7 p. Available at: http://www.who.int/medicines/ publications/WHO-PPL-Short_Summary_25Feb -ET_NM_WHO.pdf

  19. Hille K, Ruddat I, Schmid A, Hering J, Hartmann M, von Münchhausen C, et al. Cefotaximeresistant E. coli in dairy and beef cattle farms-joint analyses of two cross-sectional investigations in Germany. Prev Vet Med. 2017 May 2;142:39–45.

  20. Ojer-Usoz E, González D, Vitas AI. Clonal diversity of ESBL-producing Escherichia coli isolated from environmental, human and food samples. Int J Environ Res Public Health [Internet]. 2017 [cited 2018 Mar 9];14(7):676. Available at: https:// www.ncbi.nlm.nih.gov/pubmed/28644413

  21. Igbinosa EO, Beshiru A, Akporehe LU, Oviasogie FE, Igbinosa OO. Prevalence of methicillin-resistant Staphylococcus aureus and other Staphylococcus species in raw meat samples intended for human consumption in Benin City, Nigeria: implications for Public Health. Int J Environ Res Public Health [Internet]. 2016 Sep 24 [cited 2016 Jul 16];13(10):949. Available at: http://dx.doi .org/10.3390/ijerph13100949

  22. Bai L, Zhao J, Gan X, Wang J, Zhang X, Cui S, et al. Emergence and diversity of Salmonella enterica serovar Indiana isolates with concurrent resistance to ciprofl oxacin and cefotaxime from patients and food-producing animals in China. Antimicrob Agents Chemother. 2016 May 22;60(6):3365–71.

  23. Shilangale RP, Kaaya G, Chimwamurombe P. Antimicrobial resistance patterns of Salmonella strains isolated from beef in Namibia. BMRJ. 2016;12(1):1–6.

  24. Ballesteros N, Rubio-Lozano MS, Delgado- Suárez E, Méndez-Medina D, Braña-Varela D, Rodas-Suárez O. Perfi l de resistencia a antibióticos de serotipos de Salmonella spp. aislados de carne de res molida en la Ciudad de México. Salud Pública Méx (Cuernavaca) [Internet]. 2016 May–Jun [cited 2017 Oct 23];58(3):371– 77. Available at: http://www.scielo.org.mx/ scielo.php?script=sci_arttext&pid=S0036-36 342016000300371&lng=es. Spanish.

  25. Shah DH, Paul NC, Sischo WC, Crespo R, Guard J. Population dynamics and antimicrobial resistance of the most prevalent poultry-associated Salmonella serotypes. Poultry Sci. 2017 Mar 1;96(3):687–702.

  26. Ramírez A. La avicultura cubana: un futuro prometedor. El Sitio Avícola [Internet]. 2014 Jun [cited 2016 Feb 2];Artículos:[about 3 p.]. Interview by Chris Wright. Available at: http://www.elsitioavi cola.com/articles/2561/la-avicultura-cubana -un-futuro-prometedor/#sthash.wP6EzD6d .pdf. Spanish.

  27. Eibach D, Dekker D, Gyau Boagen K, Akenten CW, Sarpong N, et al. Extended-spectrum betalactamase- producing Escherichia coli and Klebsiella pneumoniae in local and imported poultry meat in Ghana. Vet Microbiol [Internet]. 2018 Apr [cited 2019 Jul 16];217:7–12. Available at: https:// doi.org/10.1016/j.vetmic.2018.02.023

  28. Ruiz-Roldán L, Martínez-Puchol S, Gomes C, Palma N, Riveros M, Ocampo K, et al. Presencia de Enterobacteriaceae y Escherichia coli multirresistente a antimicrobianos en carne adquirida en los mercados tradicionales en Lima, Perú. Rev Perú Med Exp Salud Pública. 2008 Jul– Sep;35(3):425–32. Spanish.

  29. Markland S, Weppelmann TA, Ma Z, Lee S, Mir RA, Teng L, et al. High prevalence of cefotaxime resistant bacteria in grazing beef cattle: a cross sectional study. Front Microbiol. 2019 Feb 6;10:176. DOI: 10.3389/fmicb.2019.00176

  30. Caruso G, Giammanco A, Cardamone C, Oliveri G, Mascarella C, Capra G, et al. Extra-intestinal fl uoroquinolone-resistant Escherichia coli strains isolated from meat. Biomed Res Int [Internet]. 2018 Nov 18 [cited 2019 Jul 16];2018(Special Issue): 8714795. Available at: https://www.hindawi .com/journals/bmri/2018/8714975/

  31. Baloch AB, Yang H, Feng Y, Xi M, Wu Q, Yang Q, et al. Presence and antimicrobial resistance of Escherichia coli in ready-to-eat foods in Shaanxi, China. J Food Prot. 2017 Feb 28;80(3):420–4.

  32. Arenas NE, Abril DA, Valencia P, Khandige S, Soto CY, Moreno-Melo V. Screening food-borne and zoonotic pathogens associated with livestock practices in the Sumapaz region, Cundinamarca, Colombia. Trop Anim Health Prod. 2017 Mar 10;49(4):739–45.

  33. Card RM, Cawthraw SA, Nunez-García J, Ellis RJ, Kay G, Pallen MJ, et al. An In vitro chicken gut model demonstrates transfer of a multidrug resistance plasmid from Salmonella to commensal Escherichia coli. mBio [Internet]. 2017 Jul 17 [cited 2018 Feb 2];8(4). Available at: http://mbio .asm.org/content/8/4/e00777-17.full

  34. Wang W, Baloch Z, Jiang T, Zhang C, Peng Z, Li F. Enterotoxigenicity and antimicrobial resistance of Staphylococcus aureus isolated from retail food in China. Front Microbiol. 2017 Nov 20;8:2256. DOI: 10.3389/fmicb.2017.02256.

  35. Osman K, Álvarez-Ordóñez A, Ruiz L, Badr J, El Hofy F, Al-Maary KS, et al. Antimicrobial resistance and virulence characterization of Staphylococcus aureus and coagulase-negative Staphylococci from imported beef meat. Ann Clin Microbiol Antimicrob [Internet]. 2017 May 10 [cited 2018 Jul 8];16:35. Available at: http://dx.doi .org/10.1186/s12941-017-0210-4

  36. Bier N, Schwartz K, Guerra B, Strauch E. Survey on antimicrobial resistance patterns in Vibrio vulnifi cus and Vibrio cholerae non-O1/non-O139 in Germany reveals carbapenemase-producing Vibrio cholerae in coastal waters. Front Microbiol [Internet]. 2015 Oct 27 [cited 2018 Feb 20] 6:1179. Available at: http://journal.frontiersin.org/ article/10.3389/fmicb.2015.01179

  37. Feglo PK, Sewurah M. Characterization of highly virulent multidrug resistant Vibrio cholerae isolated from a large cholera outbreak in Ghana. BMC [Internet]. 2018 Jan 17 [cited 2019 Jul 16];11(1):45. Available at: https://europepmc.org/ article/pmc/pmc5774149

  38. Comisión del Codex Alimentarius. Directrices para el análisis de riesgos de resistencia a los antimicrobianos transmitida por los alimentos CAC/GL 77-2011 [Internet]. Rome: Food and Agriculture Organization; 2011 [cited 2019 Sep 18]. 34 p. Available at: www.fao.org/input/download/standards/11776/CXG 077s.pdf. Spanish.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

MEDICC Review. 2020;22