medigraphic.com
SPANISH

Revista ADM Órgano Oficial de la Asociación Dental Mexicana

ISSN 0001-0944 (Print)
Órgano Oficial de la Asociación Dental Mexicana
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
    • Send manuscript
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2022, Number 3

<< Back Next >>

Rev ADM 2022; 79 (3)

Systematic review of the effects of low intensity high frequency microvibration on osteocytes cultivated.

Sebastián GLJ, Villanueva ARE, Molina FN, Hernández PE, García LS
Full text How to cite this article 10.35366/105831

DOI

DOI: 10.35366/105831
URL: https://dx.doi.org/10.35366/105831

Language: Spanish
References: 35
Page: 165-176
PDF size: 278.48 Kb.


Key words:

Osteocytes, micro-vibration, remodeling, osteoclastogenesis, cytokines.

ABSTRACT

Introduction: The bone reservoir of minerals and organic molecules is a dynamic tissue that detects and adapts to the mechanical loads of the organs and tissues of the body, which maintains the bone structure of the skeleton during growth and throughout the life of the human being. bone cells are sensitive to mechanical loads and microvibrations received by the skeleton. Objective: The purpose of this study was to carry out a systematic review about the effects exerted by high frequency-low intensity micro-vibration in osteocytes cultured in vitro on the synthesis of soluble factors, to understand if micro vibration has an influence on the acceleration of tooth movement. Material and methods: A search was carried out for review articles on osteocytes and other bone cells in vitro, establishing the PICO strategy, using keywords such as: "osteocytes", "micro-vibration", "remodeling", "osteoclastogenesis", "cytokines", "osteoblasts", was structured using PRISMA and final data capture using the Jadad and Cochrane method, evaluating the risk of bias of each of the articles. Eleven articles with high methodological quality were included. Results: Most of the in vitro experiments showed that micro-vibration had a statistically significant increase in the proliferation and differentiation of mesenchymal stem cells (MSC), in osteoblasts (MC3T3-E1) in the protein expression to induce osteogenesis, osteocytes (MLO-Y4) upregulated the expression of osteoprotegerin (OPG), prostaglandin (PGE2) and nitrous oxide (NO) by altering and regulating soluble factors such as cytokines, growth factors and chemokines of the other cells, in addition to showing a decrease in osteoclast activity (RAW246.7) in bone resorption. Conclusion: Micro-vibration induces bone remodeling, osteocytes are sensitive to mechanical stimuli and produce soluble factors to induce bone remodeling, therefore micro-vibration is used as an innovative and promising non-invasive and non-pharmacological therapy, in stimulating bone formation on the bone surface.


REFERENCES

  1. García-López S, Villanueva RE, Massó-Rojas F, Páez-Arenas A, Meikle MC. Micro-vibrations at 30?Hz on bone cells cultivated in vitro produce soluble factors for osteoclast inhibition and osteoblast activity. Arch Oral Biol. 2020; 110: 104594. doi: 10.1016/j.archoralbio.2019.104594.

  2. Kitaura H, Marahleh A, Ohori F et al. Osteocyte-Related Cytokines Regulate Osteoclast Formation and Bone Resorption. Int J Mol Sci. 2020; 21 (14): 5169. doi: 10.3390/ijms21145169

  3. Wang Z, Weng Y, Ishihara Y et al. Loading history changes the morphology and compressive force-induced expression of receptor activator of nuclear factor kappa B ligand/osteoprotegerin in MLO-Y4 osteocytes. Peer J. 2020; 8: e10244. doi: 10.7717/peerj.10244.

  4. Thompson WR, Uzer G, Brobst KE et al. Osteocyte specific responses to soluble and mechanical stimuli in a stem cell derived culture model. Sci Rep. 2015; 5: 11049. doi: 10.1038/srep11049.

  5. Moriishi T, Fukuyama R, Ito M et al. Osteocyte network; a negative regulatory system for bone mass augmented by the induction of Rankl in osteoblasts and Sost in osteocytes at unloading. PLoS One. 2012; 7 (6): e40143. doi: 10.1371/journal.pone.0040143.

  6. Hao Z, Ma Y, Wu J et al. Osteocytes regulate osteoblast differentiation and osteoclast activity through Interleukin-6 under mechanical loading. RSC Advances. 2017; 7 (79): 1-10. doi: 10.1039/C7RA09308J.

  7. Pathak JL, Bravenboer N, Klein-Nulend J. El osteocito como el nuevo descubrimiento de opciones terapéuticas en enfermedades óseas raras. Endocrinol frontal (Lausana). 2020; 11: 405. doi: 10.3389/fendo.2020.00405.

  8. Chen X, Wang Z, Duan N, Zhu G, Schwarz EM, Xie C. Osteoblast-osteoclast interactions. Connect Tissue Res. 2018; 59 (2): 99-107. doi: 10.1080/03008207.2017.1290085.

  9. Zhang Q, Chen B, Yan F et al. Interleukin-10 inhibits bone resorption: a potential therapeutic strategy in periodontitis and other bone loss diseases. Biomed Res Int. 2014; 2014: 1-5. doi: 10.1155/2014/284836.

  10. Zhao B, Ivashkiv LB. Negative regulation of osteoclastogenesis and bone resorption by cytokines and transcriptional repressors. Arthritis Res Ther. 2011; 13 (4): 234. doi: 10.1186/ar3379.

  11. García-López S, Villanueva R, Meikle MC. Alterations in the Synthesis of IL-1β, TNF-α, IL-6, and their downstream targets RANKL and OPG by mouse calvarial osteoblasts in vitro: inhibition of bone resorption by cyclic mechanical strain. Front Endocrinol (Lausanne). 2013; 4: 160. doi: 10.3389/fendo.2013.00160.

  12. Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys. 2008; 473 (2): 139-146. doi: 10.1016/j.abb.2008.03.018.

  13. Frost HM. Bone "mass" and the "mechanostat": a proposal. Anat Rec. 1987; 219 (1): 1-9. doi: 10.1002/ar.1092190104.

  14. Haffner-Luntzer M, Liedert A, Ignatius A. Mechanobiology of bone remodeling and fracture healing in the aged organism. Innov Surg Sci. 2016; 1 (2): 57-63. doi: 10.1515/iss-2016-0021.

  15. Lau E, Al-Dujaili S, Guenther A, Liu D, Wang L, You L. Effect of low-magnitude, high-frequency vibration on osteocytes in the regulation of osteoclasts. Bone. 2010; 46 (6): 1508-1515. doi: 10.1016/j.bone.2010.02.031.

  16. Steppe L, Liedert A, Ignatius A, Haffner-Luntzer M. Influence of low-magnitude high-frequency vibration on bone cells and bone regeneration. Front Bioeng Biotechnol. 2020; 8: 595139. doi: 10.3389/fbioe.2020.595139.

  17. Santos CMC, Pimenta CAM, Nobre MRC. The PICO strategy for the research question construction and evidence search. Rev Lat Am Enfermagem. 2007; 15 (3): 508-511. doi: 10.1590/s0104-11692007000300023.

  18. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021; 372: n71. doi: 10.1136/bmj. n71.

  19. Jadad AR, Moore RA, Carroll D et al. Assessing the quality of reports of randomized clinical trials: Is blinding necessary? Contr ClinTrials. 1996; 17 (1): 1-12. doi: 10.1016/0197-2456(95)00134-4.

  20. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page M, Welch V. Cochrane handbook for systematic reviews of interventions version 6.0 (Actualized in July 2019); Available in: https://training.cochrane.org/handbook/current

  21. Yasuda H, Shima N, Nakagawa N et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA. 1998; 95 (7): 1-6. doi: 10.1073/pnas.95.7.3597.

  22. Lacey DL, Timms E, Tan H et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998; 93(2):1-12. doi: 10.1016/s0092-8674(00)81569-x.

  23. Lau E, Lee WD, Li J et al. Effect of low-magnitude, high-frequency vibration on osteogenic differentiation of rat mesenchymal stromal cells. J Orthop Res. 2011; 29 (7): 1-14. doi: 10.1002/jor.21334.

  24. Bianco P, Robey PG. Skeletal stem cells. Development. 2015; 142 (6): 1-5. doi: 10.1242/dev.102210

  25. Maredziak M, Lewandowski D, Tomaszewski KA, Kubiak K, Marycz K. The effect of low-magnitude low-frequency vibrations (LMLF) on osteogenic differentiation potential of human adipose derived mesenchymal stem cells. Cell Mol Bioeng. 2017; 10 (6): 549-562. doi: 10.1007/s12195-017-0501-z.

  26. Marycz K, Lewandowski D, Tomaszewski KA, Henry BM, Golec EB, Mar?dziak M. Low-frequency, low-magnitude vibrations (LFLM) enhances chondrogenic differentiation potential of human adipose derived mesenchymal stromal stem cells (hASCs). PeerJ. 2016; 4:1-25. doi: 10.7717/peerj.1637.

  27. Li L, Yang Z, Zhang H, Chen W, Chen M, Zhu Z. Low-intensity pulsed ultrasound regulates proliferation and differentiation of osteoblasts through osteocytes. Biochem Biophys Res Commun. 2012; 418 (2): 296-300. doi: 10.1016/j.bbrc.2012.01.014.

  28. Spadaro JA, Albanese SA. Application of low-intensity ultrasound to growing bone in rats. Ultrasound Med Biol. 1998; 24 (4): 567-573. doi: 10.1016/s0301-5629(98)00006-4.

  29. Wu SH, Zhong ZM, Chen JT. Low-magnitude high-frequency vibration inhibits RANKL-induced osteoclast differentiation of RAW264.7 cells. Int J Med Sci. 2012; 9 (9): 801-807. doi: 10.7150/ijms.4838.

  30. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003; 423 (6937): 337-342. doi: 10.1038/nature01658.

  31. Sakamoto M, Fukunaga T, Sasaki K et al. Vibration enhances osteoclastogénesis by inducing RANKL expression via NF-κB signaling in osteocytes. Bone. 2019; 123: 56-66. doi: 10.1016/j.bone.2019.03.024.

  32. Uzer G, Pongkitwitoon S, Ian C et al. Gap junctional communication in osteocytes is amplified by low intensity vibrations in vitro. Plos One. 2014; 9 (3): 1-9. doi: 10.1371/journal.pone.0090840.

  33. Wu XT, Sun LW, Qi HY, Shi H, Fan YB. The bio-response of osteocytes and its regulation on osteoblasts under vibration. Cell Biol Int. 2016; 40 (4): 397-406. doi: 10.1002/cbin.10575.

  34. Judex S, Pongkitwitoon S. Differential Efficacy of 2 Vibrating Orthodontic Devices to Alter the Cellular Response in Osteoblasts, Fibroblasts, and Osteoclasts. Dose Response. 2018; 16 (3): 1-8. doi: 10.1177/1559325818792112.

  35. García-López S, Villanueva R, Pérez JL, Juárez LI, Páez-Arenas A, Massó LF, Meikle MC. Effects of micro-vibration at 30 Hz on IL-17 and RANKL expression in vitro mouse skull-derived osteoblasts and bone marrow-derived osteoclasts. Rev Mex Ortodon. 2019; 7 (1): 24-32.




Figure 1
Figure 2
Table 1
Table 2
Table 3
Table 4

2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev ADM. 2022;79