medigraphic.com
SPANISH

Acta de Otorrinolaringología & Cirugía de Cabeza y Cuello

ISSN 2539-0859 (Electronic)
ISSN 0120-8411 (Print)
Asociación Colombiana de Otorrinolaringología y Cirugía de Cabeza y cuello, Maxilofacial y Estética Facial (ACORL)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2022, Number 2

<< Back Next >>

Acta de Otorrinolaringología CCC 2022; 50 (2)

Development of a Movil App for the Preoperative Evaluation of Sinus CT Scan: One Step Towards Artificial Intelligence

Ospina J, Forigua DC, Hernández CA, Ayobi MN, Correa GT, Peñaranda A, Janjua A
Full text How to cite this article

Language: Spanish
References: 15
Page: 124-132
PDF size: 776.01 Kb.


Key words:

Paranasal Sinuses, Tomography, Artificial Intelligence, Software.

ABSTRACT

Introduction: The recent technology revolution that we have experienced has generated extensive interest in the use of artificial intelligence (AI) in the development of various systems and solutions in medicine. In the field of Otorhinolaryngology, we are seeing the first efforts to take advantage of this flourishing area. Objective: We sought to describe the development process of a mobile app created through a collaborative effort between ENT surgeons and biomedical engineers. This app has the intention to optimize the preoperative evaluation of paranasal sinus tomography (CT) to improve safety and outcomes in Endoscopic Sinus Surgery (ESS). Methods: The development of the app followed the prioritization method for MoSCoW specifications. We used the information collected from surveys of 29 Rhinology experts from different parts of the world, who evaluated anatomical variants on sinus CT scans. Two regression models were used to predict difficulty and risk using statistical learning. Conclusion: Via statistical modelling, we have developed a user-friendly tool that will ideally help surgeons assess the risk and difficulty of ESS based on the pre-operative CT scan of the sinuses. This is an exercise that demonstrates the efficacy of the collaborative efforts between surgeons and engineers to leverage AI tools and promote better solutions for our patients.


REFERENCES

  1. Jotterand F, Bosco C. Artificial Intelligence in Medicine: A Sword of Damocles? J Med Syst. 2022;46(1):1-5. doi: 10.1007/s10916-021-01796-7

  2. Crowson MG, Ranisau J, Eskander A, et al. A contemporaryreview of machine learning in otolaryngology–head and necksurgery. Laryngoscope. 2020;130(1):45-51. doi: 10.1002/lary.27850

  3. Dapre.presidencia.gov.co. Marco ético para la inteligenciaartificial en Colombia [Internet]. Gobierno de Colombia. 2021[citado falta la fecha]. Disponible en: https://dapre.presidencia.gov.co/TD/MARCO-ETICO-PARA-LA-INTELIGENCIA-ARTIFICIAL-EN-COLOMBIA-2021.pdf

  4. Chowdhury NI, Smith TL, Chandra RK TJ. Automatedclassification of osteomeatal complex inflammation on CT using convolutional neural networks. Int Forum Allergy Rhinol.2019;176(5):139-148. doi: 10.1002/alr.22196.

  5. Liu GS, Bs AY, Ba DK, et al. Deep learning classificationof inverted papilloma malignant transformation using 3Dconvolutional neural networks and magnetic resonanceimaging. 2022;(September 2021):1-9. doi: 10.1002/alr.22958

  6. Spielman DB, Gudis DA. How I Do It PreoperativeSinus Computed Tomography Scan Review Checklist.2020;(December):706-708. doi: 10.1002/lary.28444

  7. Kagen S, Garland A. Asthma and Allergy Mobile Apps in 2018.Curr Allergy Asthma Rep. 2019;19(1):6. doi: 10.1007/s11882-019-0840-z

  8. Dolin RH, Alschuler L, Boyer S, Beebe C, Behlen FM, BironPV, et al. HL7 Clinical Document Architecture, Release 2. JAm Med Inform Assoc. 2006;13(1):30-9. doi: 10.1197/jamia.M1888

  9. Goossen W, Langford LH. Exchanging care records usingHL7 V3 care provision messages. J Am Med Inform Assoc.2014;21(e2):e363-8. doi: 10.1136/amiajnl-2013-002264

  10. Dolin RH, Alschuler L, Beebe C, Biron PV, Boyer SL, Essin D, etal. The HL7 Clinical Document Architecture. J Am Med InformAssoc. 2001;8(6):552-69. doi: 10.1136/jamia.2001.0080552

  11. Haynes AB, Weiser TG, Berry WR, Lipsitz SR. A SurgicalSafety Checklist to Reduce Morbidity and Mortality in a GlobalPopulation. N Engl J Med. 2010;360(5):491-499. doi: 10.1056/NEJMsa0810119

  12. Tewfik MA, Wormald PJ. Ten Pearls for Safe Endoscopic SinusSurgery. Otolaryngol Clin North Am. 2010;43(4):933-944. doi:10.1016/j.otc.2010.04.017

  13. O’Brien WT, Hamelin S, Weitzel EK. The preoperative sinusCT: Avoiding a “cLOSE” call with surgical complications.Radiology. 2016;281(1):10-21. doi: 10.1148/radiol.2016152230

  14. García-Chabur MA, Peñaranda D, Pinzón M, et al. Lista dechequeo preoperatorio para la cirugía endoscópica de hipófisisPreoperative checklist for endoscopic pituitary surgery. ActaOtorrinolaringol Cirugía Cabeza y Cuello. 2020:322-330. doi:10.37076/acorlv48i4.562

  15. Liquid-state.com. Digital Health App Trends to Consider for2018 [Internet]. Digital Health Trends. 2018 Disponible en:https://liquid-state.com/digital-health-app-trends-2018/




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Acta de Otorrinolaringología CCC. 2022;50