medigraphic.com
SPANISH

Revista Biomédica

Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2023, Number 1

<< Back Next >>

Rev Biomed 2023; 34 (1)

Modulation of the inflammasome by Leishmania

Escalona-Montaño AR, Domínguez-Ríos DE, Mendiola-Mejía RA, Aguirre-García MM
Full text How to cite this article

Language: Spanish
References: 55
Page: 76-87
PDF size: 561.66 Kb.


Key words:

Leishmania spp., inflammasome, IL-1β, IL- 18.

ABSTRACT

Antigen-presenting cells, such as macrophages and dendritic cells, trigger signaling pathways capable of generating a great variety of effector molecules that are essential for the regulation of the immune response. In the development of leishmaniasis, the Leishmania parasite disrupts diverse signaling pathways in order to manipulate the host immune response with the aim of surviving and being able to establish an infection. Many reports have pointed out that different species of Leishmania alter such signaling pathways in a differential manner. Therefore, the current contribution undertook a review of the literature to analyze how distinct Leishmania species differentially modulate the canonical and non-canonical pathway of activating the inflammasome. Also examined was the role in leishmaniasis of IL-1β and gene polymorphisms of its gene, as well as the way in which some antileishmanial drugs modulate the inflammasome. The databases utilized for the search were PubMed, Science Direct, and Clinical Key.


REFERENCES

  1. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3Inflammasome: An Overview of Mechanisms ofActivation and Regulation. Int J Mol Sci. 2019 Jul6;20(13): 3328. 1-24. http://dx.doi.org/10.3390/ijms20133328

  2. Kihel A, Hammi I, Darif D, Lemrani M, Riyad M,Guessous F, et al. The different faces of the NLRP3inflammasome in cutaneous Leishmaniasis: A review.Cytokine. 2021 Nov; 147:155248. 1-6. http://dx.doi.org/10.1016/j.cyto.2020.155248

  3. de Carvalho RVH, Lima-Junior DS, da Silva MVG,Dilucca M, Rodrigues TS, Horta CV, et al. LeishmaniaRNA virus exacerbates Leishmaniasis by subvertinginnate immunity via TLR3-mediated NLRP3inflammasome inhibition. Nat Commun. 2019 Nov21;10(1):5273. 1-17. http://dx.doi.org/10.1038/s41467-019-13356-2

  4. Thorstenberg ML, Rangel Ferreira MV, Amorim N,Canetti C, Morrone FB, Alves Filho JC, et al. PurinergicCooperation Between P2Y2 and P2X7 ReceptorsPromote Cutaneous Leishmaniasis Control: Involvementof Pannexin-1 and Leukotrienes. Front Immunol.2018 Jul 9;9: 1531. 1-15. http://dx.doi.org/10.3389/fimmu.2018.01531

  5. Gupta AK, Ghosh K, Palit S, Barua J, Das PK, UkilA. Leishmania donovani inhibits inflammasomedependentmacrophage activation by exploiting thenegative regulatory proteins A20 and UCP2. FASEB J.2017 Nov;31(11):5087-101. http://dx.doi.org/10.1096/fj.201700407R

  6. da Costa LS, Outlioua A, Anginot A, Akarid K, ArnoultD. RNA viruses promote activation of the NLRP3inflammasome through cytopathogenic effect-inducedpotassium efflux. Cell Death Dis. 2019 Apr 25;10(5):346.1-15. http://dx.doi.org/10.1038/s41419-019-1579-0

  7. Platnich JM, Chung H, Lau A, Sandall CF,Bondzi-Simpson A, Chen HM, et al. Shiga Toxin/Lipopolysaccharide Activates Caspase-4 and GasderminD to Trigger Mitochondrial Reactive Oxygen SpeciesUpstream of the NLRP3 Inflammasome. Cell Rep. 2018Nov 6;25(6):1525-15336.e7. http://dx.doi.org/10.1016/j.celrep.2018.09.071

  8. Burza S, Croft SL, Boelaert M. Leishmaniasis. Lancet.2018 Sep 15;392(10151):951-970. http://dx.doi.org/10.1016/S0140-6736(18)31204-2

  9. Rodríguez-Serrato MA, Salinas-Carmona MC, Limón-Flores AY. Immune response to Leishmania mexicana:the host-parasite relationship. Pathog Dis. 2020 Nov11;78(8):ftaa060. 1-12. http://dx.doi.org/10.1093/femspd/ftaa060

  10. Wilkins-Rodríguez AA, Pérez-Torres A, Escalona-Montaño AR, Gutiérrez-Kobeh L. Differential Regulationof l-Arginine Metabolism through Arginase 1 duringInfection with Leishmania mexicana Isolates Obtainedfrom Patients with Localized and Diffuse CutaneousLeishmaniasis. Infect Immun. 2020 Jun 22;88(7):e00963-19. http://dx.doi.org/10.1128/IAI.00963-19

  11. Sanchez-Tejeda G, Rodríguez N, Parra C, Hernandez-Montes O, Barker DC, Monroy-Ostria A. Cutaneousleishmaniasis caused by members of Leishmaniabraziliensis complex in Nayarit, state of Mexico.Mem. Inst. Oswaldo Cruz. 2001 96, 15–19. https://doi.org/10.1590/S0074-02762001000100002.

  12. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, CanoJ, et al. Leishmaniasis worldwide and global estimates ofits incidence. PLoS ONE 2012.7, e35671. 1-12. https://doi.org/10.1371/journal.pone.0035671.

  13. Montalvo Alvarez AM, Nodarse JF, Goodridge IM,Fidalgo LM, Marin M, Van Der Auwera G, et al.Differentiation of Leishmania (Viannia) panamensis andLeishmania (V.) guyanensis using BccI for hsp70 PCRRFLP.Trans R Soc Trop Med Hyg. 2010 May;104(5):364-7. https://doi.org/10.1016/j.trstmh.2009.12.002.

  14. Zamboni DS, Sacks DL. Inflammasomes andLeishmania: in good times or bad, in sickness or inhealth. Curr Opin Microbiol. 2019 Dec;52:70-6. http://dx.doi.org/10.1016/j.mib.2019.05.005

  15. de Carvalho RVH, Zamboni DS. InflammasomeActivation in Response to Intracellular ProtozoanParasites. Trends Parasitol. 2020 May;36(5):459-72.http://dx.doi.org/10.1016/j.pt.2020.02.006

  16. Saresella M, Basilico N, Marventano I, Perego F, LaRosa F, Piancone F, et al. Leishmania infantum infectionreduces the amyloid β42-stimulated NLRP3 inflammasomeactivation. Brain Behav Immun. 2020 Aug;88:597-05.http://dx.doi.org/10.1016/j.bbi.2020.04.058

  17. Stuart KD, Weeks R, Guilbride L, Myler PJ. Molecularorganization of Leishmania RNA virus 1. Proc Natl AcadSci U S A. 1992 Sep 15;89(18):8596-600. http://dx.doi.org/ 10.1073/pnas.89.18.8596

  18. Hartley MA, Eren RO, Rossi M, Prevel F, CastiglioniP, Isorce N, et al. Leishmania guyanensis parasitesblock the activation of the inflammasome by inhibitingmaturation of IL-1β. Microb Cell. 2018 Jan 14;5(3):137-49. http://dx.doi.org/10.15698/mic2018.03.619

  19. Lecoeur H, Prina E, Rosazza T, Kokou K, N’Diaye P,Aulner N, et al. Targeting Macrophage Histone H3Modification as a Leishmania Strategy to Dampen theNF-κB/NLRP3-Mediated Inflammatory Response.Cell Rep. 2020 Feb 11;30(6):1870-82.e4. http://dx.doi.org/10.1016/j.celrep.2020.01.030

  20. Kamhawi S, Serafim TD. Leishmania: A Maestro inEpigenetic Manipulation of Macrophage Inflammasomes.Trends Parasitol. 2020 Jun;36(6):498-01. http://dx.doi.org/10.1016/j.pt.2020.04.008

  21. Thorstenberg ML, Martins MDA, Figliuolo V, SilvaCLM, Savio LEB, Coutinho-Silva R. P2Y2 ReceptorInduces L. amazonensis Infection Control in a MechanismDependent on Caspase-1 Activation and IL-1β Secretion.Mediators Inflamm. 2020 Oct 1;2020:2545682. 1-11.http://dx.doi.org/10.1155/2020/2545682

  22. Saha G, Khamar BM, Singh OP, Sundar S, Dubey VK.Leishmania donovani evades Caspase 1 dependenthost defense mechanism during infection. Int J BiolMacromol. 2019 Apr 1;126:392-01. http://dx.doi.org/10.1016/j.ijbiomac.2018.12.185

  23. Gupta G, Santana AKM, Gomes CM, Turatti A,Milanezi CM, Bueno Filho R, et al. Inflammasomegene expression is associated with immunopathology inhuman localized cutaneous leishmaniasis. Cell Immunol.2019 Jul;341:103920. 1-8. http://dx.doi.org/10.1016/j.cellimm.2019.04.008

  24. Moreira RB, Pirmez C, de Oliveira-Neto MP, Aguiar LS,Gonçalves AJS, Pereira LOR, et al. AIM2 inflammasomeis associated with disease severity in tegumentaryleishmaniasis caused by Leishmania (V.) braziliensis.Parasite Immunol. 2017 Jul;39(7). 1-23. http://dx.doi.org/ 10.1111/pim.12435.

  25. Machado PR, Ampuero J, Guimarães LH, Villasboas L,Rocha AT, Schriefer A, et al. Miltefosine in the treatmentof cutaneous leishmaniasis caused by Leishmaniabraziliensis in Brazil: a randomized and controlled trial.PLoS Negl Trop Dis. 2010 Dec 21;4(12):e912. 1-6.http://dx.doi.org/10.1371/journal.pntd.0000912.

  26. Santos D, Campos TM, Saldanha M, Oliveira SC,Nascimento M, Zamboni DS, et al. IL-1β Productionby Intermediate Monocytes Is Associated withImmunopathology in Cutaneous Leishmaniasis. J InvestDermatol. 2018 May;138(5):1107-15. http://dx.doi.org/doi:10.1016/j.jid.2017.11.029

  27. Gurung P, Karki R, Vogel P, Watanabe M, Bix M,Lamkanfi M, et al. An NLRP3 inflammasome-triggeredTh2-biased adaptive immune response promotesleishmaniasis. J Clin Invest. 2015 Mar 2;125(3):1329-38. http://dx.doi.org/doi: 10.1172/JCI79526.

  28. Harrington V, Gurung P. Reconciling protective andpathogenic roles of the NLRP3 inflammasome inleishmaniasis. Immunol Rev. 2020 Sep;297(1):53-66.http://dx.doi.org/doi:10.1111/imr.12886

  29. Gonzalez K, Calzada JE, Corbett CEP, Saldaña A,Laurenti MD. Involvement of the Inflammasome andTh17 Cells in Skin Lesions of Human CutaneousLeishmaniasi27;2020:9278931. 1-10. http://dx.doi.org/10.1155/2020/9278931

  30. Mendonça LSO, Santos JM, Kaneto CM, de CarvalhoLD, Lima-Santos J, Augusto DG, et al. Characterizationof serum cytokines and circulating microRNAs thatare predicted to regulate inflammasome genes incutaneous leishmaniasis patients. Exp Parasitol. 2020Mar;210:107846. 1-10 http://dx.doi.org/0.1016/j.exppara.2020.107846

  31. Dey R, Joshi AB, Oliveira F, Pereira L, Guimarães-Costa AB, Serafim TD, et al. Gut Microbes Egestedduring Bites of Infected Sand Flies Augment Severity ofLeishmaniasis via Inflammasome-Derived IL-1β. CellHost Microbe. 2018 Jan 10;23(1):134-143.e6. http://dx.doi.org/10.1016/j.chom.2017.12.002

  32. Platnich JM, Muruve DA. NOD-like receptors andinflammasomes: A review of their canonical and noncanonicalsignaling pathways. Arch Biochem Biophys.2019 Jul 30;670:4-14. http://dx.doi.org/10.1016/j.abb.2019.02.008

  33. Downs KP, Nguyen H, Dorfleutner A, Stehlik C. Anoverview of the non-canonical inflammasome. MolAspects Med. 2020 Dec;76:100924. 1-13. http://dx.doi.org/10.1016/j.mam.2020.100924

  34. Whitaker SM, Colmenares M, Pestana KG, McMahon-Pratt D. Leishmania pifanoi proteoglycolipid complex P8induces macrophage cytokine production through Tolllikereceptor 4. Infect Immun. 2008 May;76(5):2149-56.http://dx.doi.org/10.1128/IAI.01528-07.

  35. Kuang S, Zheng J, Yang H, Li S, Duan S, Shen Y, etal. Structure insight of GSDMD reveals the basis ofGSDMD autoinhibition in cell pyroptosis. Proc NatlAcad Sci U S A. 2017 Oct 3;114(40):10642-47. http://dx.doi.org/10.1073/pnas.1708194114

  36. Rathkey JK, Benson BL, Chirieleison SM, Yang J,Xiao TS, Dubyak GR, et al. Live-cell visualizationof gasdermin D-driven pyroptotic cell death. J BiolChem. 2017 Sep 1;292(35):14649-58. http://dx.doi.org/10.1074/jbc.M117.797217

  37. Sborgi L, Rühl S, Mulvihill E, Pipercevic J, Heilig R,Stahlberg H, et al. GSDMD membrane pore formationconstitutes the mechanism of pyroptotic cell death.EMBO J. 2016 Aug 15;35(16):1766-78. http://dx.doi.org/10.15252/embj.201694696.

  38. Cunha LD, Silva ALN, Ribeiro JM, Mascarenhas DPA,Quirino GFS, Santos LL, et al. AIM2 Engages Activebut Unprocessed Caspase-1 to Induce NoncanonicalActivation of the NLRP3 Inflammasome. Cell Rep.2017 Jul 25;20(4):794-05. http://dx.doi.org/10.1016/j.celrep.2017.06.086

  39. de Carvalho RVH, Andrade WA, Lima-Junior DS,Dilucca M, de Oliveira CV, Wang K, et al. LeishmaniaLipophosphoglycan Triggers Caspase-11 and the NoncanonicalActivation of the NLRP3 Inflammasome.Cell Rep. 2019 Jan 8;26(2):429-37.e5. http://dx.doi.org/10.1016/j.celrep.2018.12.047

  40. de Veer MJ, Curtis JM, Baldwin TM, DiDonato JA,Sexton A, McConville MJ, et al. MyD88 is essentialfor clearance of Leishmania major: possible role forlipophosphoglycan and Toll-like receptor 2 signaling.Eur J Immunol. 2003 Oct;33(10):2822-31.http://dx.doi.org/ doi.org/ 10.1002/eji.200324128

  41. Becker I, Salaiza N, Aguirre M, Delgado J,Carrillo-Carrasco N, Kobeh LG, et al. Leishmanialipophosphoglycan (LPG) activates NK cells throughtoll-like receptor-2. Mol Biochem Parasitol. 2003 Aug31;130(2):65-74. http://dx.doi.org/ 10.1016/s0166-6851(03)00160-9

  42. de Carvalho RVH, Lima-Júnior DS, de Oliveira CV,Zamboni DS. Endosymbiotic RNA virus inhibitsLeishmania-induced caspase-11 activation. iScience.2020 Dec 29;24(1):102004. 1-17. http://dx.doi.org/10.1016/j.isci.2020.102004

  43. Chaves MM, Sinflorio DA, Thorstenberg ML, MartinsMDA, Moreira-Souza ACA, Rangel TP, et al. NoncanonicalNLRP3 inflammasome activation and IL-1β signaling are necessary to L. amazonensis controlmediated by P2X7 receptor and leukotriene B4. PLoSPathog. 2019 Jun 24;15(6):e1007887. 1-21 http://dx.doi.org/10.1371/journal.ppat.1007887

  44. Figliuolo VR, Chaves SP, Savio LEB, ThorstenbergMLP, Machado Salles É, Takiya CM, et al. The role ofthe P2X7 receptor in murine cutaneous leishmaniasis:aspects of inflammation and parasite control.Purinergic Signal. 2017 Jun;13(2):143-52. http://dx.doi.org/10.1007/s11302-016-9544-1

  45. Patil T, More V, Rane D, Mukherjee A, Suresh R,Patidar A, et al. Pro-inflammatory cytokine Interleukin-1β (IL-1β) controls Leishmania infection. Cytokine.2018 Dec;112:27-31. http://dx.doi.org/10.1016/j.cyto.2018.06.033

  46. Fernández-Figueroa EA, Rangel-Escareño C, Espinosa-Mateos V, Carrillo-Sánchez K, Salaiza-Suazo N,Carrada-Figueroa G, et al. Disease severity in patientsinfected with Leishmania mexicana relates to IL-1β.PLoS Negl Trop Dis. 2012;6(5):e1533. 1-9. http://dx.doi.org/10.1371/journal.pntd.0001533

  47. Kautz-Neu K, Kostka SL, Dinges S, Iwakura Y, UdeyMC, von Stebut E. IL-1 signalling is dispensable forprotective immunity in Leishmania-resistant mice.Exp Dermatol. 2011 Jan;20(1):76-8. http://dx.doi:10.1111/j.1600-0625.2010.01172.x.

  48. da Silva GAV, de Mesquita TGR, de Souza EncarnaçãoHV, do Espírito Santo Junior J, da Costa Sabino K, deAguiar Neres I, et al. A polymorphism in the IL1B gene(rs16944 T/C) is associated with cutaneous leishmaniasiscaused by Leishmania guyanensis and plasmacytokine interleukin receptor antagonist. Cytokine.2019 Nov;123:154788. 1-7. http://dx.doi: 10.1016/j.cyto.2019.154788.

  49. Bharati K. Human genetic polymorphism andLeishmaniasis. Infect Genet Evol. 2022 Mar;98:105203.1-12. http://dx.doi: 10.1016/j.meegid.2021.105203.

  50. Robertson AAB. Inhibiting Inflammasomes with SmallMolecules. Exp Suppl. 2018;108:343-400. http://dx.doi.org/10.1007/978-3-319-89390-7_15

  51. Zahid A, Li B, Kombe AJK, Jin T, Tao J. PharmacologicalInhibitors of the NLRP3 Inflammasome. Front Immunol.2019 Oct 25;10:2538. 1-10. http://dx.doi.org/10.3389/fimmu.2019.02538

  52. Guegan H, Ory K, Belaz S, Jan A, Dion S, Legentil L,et al. In vitro and in vivo immunomodulatory propertiesof octyl-β-D-galactofuranoside during Leishmaniadonovani infection. Parasit Vectors. 2019 Dec23;12(1):600. 1-16. http://dx.doi.org/10.1186/s13071-019-3858-0

  53. Domeneghetti L, Demarchi IG, Caitano JZ, PedrosoRB, Silveira TGV, Lonardoni MVC. Calophyllumbrasiliense Modulates the Immune Response andPromotes Leishmania amazonensis Intracellular Death.Mediators Inflamm. 2018 Feb 13;2018:6148351.1-10.http://dx.doi.org/10.1155/2018/6148351

  54. André S, Rodrígues V, Pemberton S, Laforge M,Fortier Y, Cordeiro-da-Silva A, et al. AntileishmanialDrugs Modulate IL-12 Expression and InflammasomeActivation in Primary Human Cells. J Immunol. 2020Apr 1;204(7):1869-80. http://dx.doi.org/10.4049/jimmunol.1900590

  55. Iacano AJ, Lewis H, Hazen JE, Andro H, Smith JD,Gulshan K. Miltefosine increases macrophage cholesterolrelease and inhibits NLRP3-inflammasome assemblyand IL-1β release. Sci Rep. 2019 Jul 31;9(1):11128.1-12. http://dx.doi.org/10.1038/s41598-019-47610-w




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Biomed. 2023;34