medigraphic.com
SPANISH

Salud Pública de México

Instituto Nacional de Salud Pública
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2023, Number 2

<< Back Next >>

salud publica mex 2023; 65 (2)

Plasmodium vivax apical membrane antigen 1I-II from Nicaragua (2012-2013): genetic and antigenic polymorphism

González-Cerón L, Piedra-Arévalo FO, Casanova-Hernández D, Santillán-Valenzuela F, Montoya-Pérez A
Full text How to cite this article

Language: English
References: 51
Page: 127-135
PDF size: 878.15 Kb.


Key words:

Plasmodium vivax, Nicaragua, apical membrane antigen 1, genetic structure, B cell epitopes.

ABSTRACT

Objective. Genetic and antigenic polymorphism of P. vivax apical membrane antigen-1 (pvama1I-II) from Nicaragua was examined. Materials and methods. Infected blood samples from patients were obtained during 2012-2013. A gene fragment comprising domains I-II was amplified and sequenced, and the genetic parameters, haplotype relationships, genetic structure, and amino acid variation in predicted B cell epitopes were analyzed. Results. 65 sequences of pvama1III had 19 nonsynonymous and five synonymous nucleotide changes. Nicaraguan parasites had low diversity, high linkage disequilibrium, and few recombination events. Neutrality tests indicate a positive and divergent selection, and three genetic clusters with loss of haplotypes were demonstrated. Amino acid variation predominated in predicted B cell epitopes and was closely related to that in Latin American parasites. Conclusions. Nicaraguan P. vivax is a moderately differentiated population under contraction and focalization processes, and the antigenic diversity resembles that of Latin American parasites. This information is relevant for vaccine development and epidemiological surveillance


REFERENCES

  1. World Health Organization. Malaria Report 2021. Geneva: WHO, 2021[cited 2022 June 28]. Available from: https://www.mmv.org/sites/default/files/uploads/docs/publications/World_Malaria_Report_2021.pdf

  2. World Health Organization. Eliminating malaria: learning fromthe past, looking ahead 2011. Geneva: WHO, 2011 [cited 2022June 28]. Available from: https://apps.who.int/iris/bitstream/handle/10665/79937/9789241502504_eng.pdf?sequence=1&isAllowed=y

  3. Arnott A, Barry AE, Reeder JC. Understanding the population geneticsof Plasmodium vivax is essential for malaria control and elimination. Malar J.2012;11(14). https://doi.org/10.1186/1475-2875-11-14

  4. Galinski MR, Barnwell JW. Plasmodium vivax: Merozoites, invasion of reticulocytesand considerations for malaria vaccine development. ParasitolToday. 1996;12(1):20-9. https://doi.org/10.1016/0169-4758(96)80641-7

  5. Hodder AN, Crewther PE, Matthew ML, Reid GE, Moritz RL, SimpsonRJ, et al. The disulfide bond structure of Plasmodium apical membraneantigen-1. J Biol Chem. 1996;271(46):29446-52. https://doi.org/10.1074/jbc.271.46.29446

  6. Lamarque M, Besteiro S, Papoin J, Roques M, Vulliez-Le Normand B,Morlon-Guyot J, et al. The RON2-AMA1 interaction is a critical step inmoving junction-dependent invasion by apicomplexan parasites. PLoSPathog. 2011;7(2):e1001276. https://doi.org/10.1371/journal.ppat.1001276

  7. Rodrigues MH, Rodrigues KM, Oliveira TR, Comodo AN, Rodrigues MM,Kocken CH, et al. Antibody response of naturally infected individuals torecombinant Plasmodium vivax apical membrane antigen-1. Int J Parasitol.2005;35(2):185-92. https://doi.org/10.1016/j.ijpara.2004.11.003

  8. Múfalo BC, Gentil F, Bargieri DY, Costa FTM, Rodrigues MM, SoaresIS. Plasmodium vivax apical membrane antigen-1: comparative recognitionof different domains by antibodies induced during natural humaninfection. Microb Infect. 2008;10(12-3):1266-73. https://doi.org/10.1016/j.micinf.2008.07.023

  9. Vicentin EC, Francoso KS, Rocha MV, Iourtov D, Dos Santos FL,Kubrusly FS, et al. Invasion-inhibitory antibodies elicited by immunizationwith Plasmodium vivax apical membrane antigen-1 expressed in Pichiapastoris yeast. Infect Immun. 2014;82(3):1296-307. https://doi.org/10.1128/IAI.01169-13

  10. Gutierrez S, Gonzalez-Ceron L, Montoya A, Sandoval MA, Torres ME,Cerritos R. Genetic structure of Plasmodium vivax in Nicaragua, a countryin the control phase, based on the carboxyl terminal region of the merozoitesurface protein-1. Infect Genet Evol. 2016;40:324-30. https://doi.org/10.1016/j.meegid.2015.08.040

  11. Gonzalez-Ceron L, Montoya A, Corzo-Gomez JC, Cerritos R, SantillanF, Sandoval MA. Genetic diversity and natural selection of Plasmodiumvivax multi-drug resistant gene (pvmdr1) in Mesoamerica. Malar J.2017;16(1):261. https://doi.org/10.1186/s12936-017-1905-x

  12. Soto AM, Gonzalez-Ceron L, Santillan-Valenzuela F, Parrales ME, MontoyaA. Recurrent Plasmodium vivax cases of both short and long latencyincreased with transmission intensity and were distributed year-roundin the most affected municipalities of the RACCN, Nicaragua, 2013-2018. Int J Environ Res Public Health. 2022;19(10):6195-212. https://doi.org/10.3390/ijerph19106195

  13. World Health Organization. New perspectives : malaria diagnosis: reportof a joint WHO/USAID informal consultation, 25-27 October 1999.Switzerland: WHO, 2000 [cited 2022 June 7]. Available from: https://apps.who.int/iris/handle/10665/66321

  14. Hall TA. BioEdit: a user-friendly biological sequence alignment editorand analysis program for Windows 95/98/NT. Nucl Acids Symp Ser.1999;41:95-8.

  15. Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, LibradoP, Ramos-Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysisof large data sets. Mol Biol Evol. 2017;34(12):3299-302. https://doi.org/10.1093/molbev/msx248

  16. Tamura K, Stecher G, Kumar S. MEGA11: Molecular EvolutionaryGenetics Analysis Version 11. Mol Biol Evol. 2021;38(7):3022-7. https://doi.org/10.1093/molbev/msab120

  17. Bandelt HJ, Forster P, Rohl A. Median-joining networks for inferringintraspecific phylogenies. Mol Biol Evol. 1999;16(1):37-48. https://doi.org/10.1093/oxfordjournals.molbev.a026036

  18. Pritchard JK, Stephens M, Donnelly P. Inference of population structureusing multilocus genotype data. Genetics. 2000;155(2):945-59.

  19. Dent E. Structure Harvester. 2014 [cited 2022 June 28]. Available from:http://taylor0.biology.ucla.edu/structureHarvester/

  20. National Library of Medicine. National Center for BiotechnologyInformation. USA [cited 2022 June 28]. Available from: https://www.ncbi.nlm.nih.gov/

  21. Rajesh V, Elamaran M, Vidya S, Gowrishankar M, Kochar D, Das A.Plasmodium vivax: genetic diversity of the apical membrane antigen-1(AMA-1) in isolates from India. Exp Parasitol. 2007;116(3):252-6. https://doi.org/10.1016/j.exppara.2007.01.006

  22. Kale S, Pande V, Singh OP, Carlton JM, Mallick PK. Genetic diversityin two leading Plasmodium vivax malaria vaccine candidates AMA1 andMSP119 at three sites in India. PLoS Negl Trop Dis. 2021;15(8):e0009652.https://doi.org/10.1371/journal.pntd.0009652

  23. Gunasekera AM, Wickramarachchi T, Neafsey DE, Ganguli I, PereraL, Premaratne PH, et al. Genetic diversity and selection at the Plasmodiumvivax apical membrane antigen-1 (PvAMA-1) locus in a Sri Lankanpopulation. Mol Biol Evol. 2007;24(4):939-47. https://doi.org/10.1093/molbev/msm013

  24. Ord RL, Tami A, Sutherland CJ. ama1 genes of sympatric Plasmodiumvivax and P. falciparum from Venezuela differ significantly in genetic diversityand recombination frequency. PLoS ONE. 2008;3(10):e3366. https://doi.org/10.1371/journal.pone.0003366

  25. Putaporntip C, Jongwutiwes S, Grynberg P, Cui L, Hughes AL. Nucleotidesequence polymorphism at the apical membrane antigen-1 locusreveals population history of Plasmodium vivax in Thailand. Infect GenetEvol. 2009;9(6):1295-300. https://doi.org/10.1016/j.meegid.2009.07.005

  26. Motevalli Haghi A, Moradi S, Nateghpour M, Edrissian G. Allelic Variationsof Plasmodium vivax Apical Membrane Antigen-1 (Pv AMA-1) inMalarious Areas of Southeastern Iran Using PCR-RFLP Technique. Iran JParasitol. 2018;13(3):473-9.

  27. Zakeri S, Sadeghi H, Mehrizi AA, Djadid ND. Population geneticstructure and polymorphism analysis of gene encoding apical membraneantigen-1 (AMA-1) of Iranian Plasmodium vivax wild isolates. Acta Trop.2013;126(3):269-79. https://doi.org/10.1016/j.actatropica.2013.02.017

  28. Esmaeili-Rastaghi AR, Nedaei F, Nahrevanian H, Hoseinkhan N. Geneticdiversity and effect of natural selection at apical membrane antigen-1(AMA-1) among Iranian Plasmodium vivax isolates. Folia Parasitol (Praha).2014;61(5):385-93.

  29. Nedaei F, Noormohammadi Z, Naddaf SR, Mohammadi S, EsmaeiliRastaghi AR. Analysis of Plasmodium vivax apical membrane antigen-1(PvAMA-1) haplotypes among Iranian isolates. Int J Mol Cell Med.2017;6(4):222-34. https://doi.org/10.22088/BUMS.6.4.222

  30. Arnott A, Mueller I, Ramsland PA, Siba PM, Reeder JC, Barry AE. Globalpopulation structure of the genes encoding the malaria vaccine candidate,Plasmodium vivax apical membrane antigen 1 (PvAMA1). PLoS Negl TropDis. 2013;7(10):e2506. https://doi.org/10.1371/journal.pntd.0002506

  31. Kang JM, Lee J, Cho PY, Moon SU, Ju HL, Ahn SK, et al. Populationgenetic structure and natural selection of apical membrane antigen-1in Plasmodium vivax Korean isolates. Malar J. 2015;14:455. https://doi.org/10.1186/s12936-015-0942-6

  32. Bittencourt NC, da Silva ABI, Virgili NS, Schappo AP, Gervasio J, PimentaTS, et al. Plasmodium vivax AMA1: Implications of distinct haplotypesfor immune response. PLoS Negl Trop Dis. 2020;14(7):e0008471. https://doi.org/10.1371/journal.pntd.0008471

  33. Zhu X, Zhao P, Wang S, Liu F, Liu J, Wang J, et al. Analysis of Pvama1genes from China-Myanmar border reveals little regional genetic differentiationof Plasmodium vivax populations. Parasit Vectors. 2016;9(1):614.https://doi.org/10.1186/s13071-016-1899-1

  34. Hupalo DN, Luo Z, Melnikov A, Sutton PL, Rogov P, Escalante A, et al.Population genomics studies identify signatures of global dispersal anddrug resistance in Plasmodium vivax. Nat Genet. 2016;48(8):953-8. https://doi.org/10.1038/ng.3588

  35. Eukaryotic Pathogen, Vector and Host Informatics Resource. PlasmoDB.USA: US National Institute of Allergy and Infectious Diseases, 2022[cited 2022 June 28]. Available from: https://plasmodb.org/plasmo/app/

  36. Immune Epitope Database. Epitope Prediction and Analysis Tools. USA:US National Institute of Allergy and Infectious Diseases, 2022 [cited 2022June 28]. Available from: http://tools.iedb.org

  37. Larsen JE, Lund O, Nielsen M. Improved method for predicting linearB-cell epitopes. Immunome Res. 2006;2:2. https://doi.org/10.1186/1745-7580-2-2

  38. Jespersen MC, Peters B, Nielsen M, Marcatili P. BepiPred-2.0: improvingsequence-based B-cell epitope prediction using conformational epitopes.Nucleic Acids Res. 2017;45(W1):W24-9. https://doi.org/10.1093/nar/gkx346

  39. World Health Organization. World Malaria Report 2012. Geneva:WHO, 2012 [cited 2022 Oct 28]. Available from: https://www.who.int/publications/i/item/9789241564533

  40. Flores-Alanis A, Gonzalez-Ceron L, Santillan F, Ximenez C, Sandoval MA,Cerritos R. Temporal genetic changes in Plasmodium vivax apical membraneantigen 1 over 19 years of transmission in southern Mexico. Parasit Vectors.2017;10(1):217. https://doi.org/10.1186/s13071-017-2156-y

  41. Flores-Alanis A, Gonzalez-Ceron L, Santillan-Valenzuela F, Ximenez C,Sandoval-Bautista MA, Cerritos R. Spatiotemporal changes in Plasmodiumvivax msp142 haplotypes in Southern Mexico: from the control to thepre-elimination phase. Microorganisms. 2022;10(1):186-99. https://doi.org/10.3390/microorganisms10010186

  42. Larrañaga N, Mejia RE, Hormaza JI, Montoya A, Soto A, FontechaGA. Genetic structure of Plasmodium falciparum populations acrossthe Honduras-Nicaragua border. Malar J. 2013;12:354. https://doi.org/10.1186/1475-2875-12-354

  43. Gonzalez-Ceron L, Rodriguez MH, Montoya A, Santillan-ValenzuelaF, Corzo-Gomez JC. Molecular variation of Plasmodium vivax dehydrofolatereductase in Mexico and Nicaragua contrasts with that occurringin South America. Salud Publica Mex. 2020;62(4):364-71. https://doi.org/10.21149/10129

  44. Pinto A, Archaga O, Mejia A, Escober L, Henriquez J, Montoya A, et al.Evidence of a recent bottleneck in Plasmodium falciparum populationson the Honduran-Nicaraguan border. Pathogens. 2021;10(11):1432-44.https://doi.org/10.3390/pathogens10111432

  45. Lopez AC, Ortiz A, Coello J, Sosa-Ochoa W, Torres RE, Banegas EI, et al.Genetic diversity of Plasmodium vivax and Plasmodium falciparum in Honduras.Malar J. 2012;11:391. https://doi.org/10.1186/1475-2875-11-391

  46. Cole-Tobian J, King CL. Diversity and natural selection in Plasmodiumvivax Duffy binding protein gene. Mol Biochem Parasitol. 2003;127(2):121-32. https://doi.org/10.1016/S0166-6851(02)00327-4

  47. Taylor JE, Pacheco MA, Bacon DJ, Beg MA, Dantas-Machado RL,Fairhurst RM, et al. The evolutionary history of Plasmodium vivax asinferred from mitochondrial genomes: parasite genetic diversity in theAmericas. Mol Biol Evol. 2013;30(9):2050-64. https://doi.org/10.1093/molbev/mst104

  48. Martens P, Hall L. Malaria on the move: human population movementand malaria transmission. Emerg Infect Dis. 2000;6(2):103-9. https://doi.org/10.3201/eid0602.000202

  49. Bueno LL, Lobo FP, Morais CG, Mourao LC, de Avila RA, SoaresIS, et al. Identification of a highly antigenic linear B cell epitope withinPlasmodium vivax apical membrane antigen 1 (AMA-1). PLoS One.2011;6(6):e21289. https://doi.org/10.1371/journal.pone.0021289

  50. Guy AJ, Irani V, Richards JS, Ramsland PA. Structural patterns of selectionand diversity for Plasmodium vivax antigens DBP and AMA1. Malar J.2018;17(1):183. https://doi.org/10.1186/s12936-018-2324-3

  51. Gonzalez-Ceron L, Mu J, Santillan F, Joy D, Sandoval MA, Camas G, et al.Molecular and epidemiological characterization of Plasmodium vivax recurrentinfections in southern Mexico. Parasit Vectors. 2013;6:109. https://doi.org/10.1186/1756-3305-6-109




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

salud publica mex. 2023;65