medigraphic.com
SPANISH

Revista Cubana de Plantas Medicinales

ISSN 1028-4796 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2021, Number 3

<< Back Next >>

Rev Cubana Plant Med 2021; 26 (3)

The protective effect of Descurainia sophia seed extract on oxidative stress and nephrotoxicity induced by acetaminophen in mice

Pourmahdi O, Gholami-Ahangaran M, Karimi-Dehkordi M, Ostadpoor M
Full text How to cite this article

Language: English
References: 39
Page:
PDF size: 199.59 Kb.


Key words:

acetaminophen, mice, Descurainia sophia seed, protective effect.

ABSTRACT

Introduction: Acetaminophen is the most common known agent which leads to hepatic and renal toxicity at an over dose in human and experimental animals.
Objective: The purpose of the current study was to investigate the protective effect of Descurainia Sophia seed extract on oxidative stress and nephrotoxicity induced by acetaminophen in mice.
Methods: In this study, 60 male albino mice were randomly assigned into six groups of ten mice, and DS seed extract was administered to mice for seven days in doses of (50,100,200 and 400 mg/kg) respectively. Toxicity was induced by acetaminophen (i.p. 500 mg/kg) for 7 days. 24 hours after the acetaminophen administration the mice were sacrificed under mild anesthesia and their blood was collected to estimate blood urea nitrogen (BUN), Creatinine, Uric acid and malondialdehyde (MDA) levels also, kidneys were removed for histopathological examination.
Results: Administration of acetaminophen significantly increased the BUN, creatinine, uric acid and MDA levels as compared to control group(p<0.05). DS seed extract pre-treatment significantly decreased serum BUN, Creatinine, Uric acid and MDA levels as compared to acetaminophen group (p<0.05). In histopathological examination DS extract restored the damage that cause by acetaminophen especially in dose of 400 mg/kg.
Conclusions: Our result demonstrate that the oral administration of DS seed extract has protective effect against acetaminophen nephropathy.


REFERENCES

  1. Ozkaya O, Genc G, Bek K, Sullu Y. A case of acetaminophen (paracetamol) causing renal failure without liver damage in a child and review of literature. Ren Fail. 2010;32:1125-7. DOI: https://doi.org/10.3109/0886022X.2010.509830

  2. Mazer M, Perrone J. Acetaminophen-induced nephrotoxicity: pathophysiology, clinical manifestations and management. J Med Tox. 2008;4:2-6. DOI: https://doi.org/10.1007/BF03160941

  3. McGill MR, Williams CD, Xie Y, Ramachandran A, Jaeschke H. Acetaminophen-induced liver injury in rats and mice: comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity. Tox Appl Pharm. 2012;264:387-94. DOI: https://doi.org/10.1016/j.taap.2012.08.015

  4. Abdel-Zaher AO, Abdel-Hady RH, Mahmoud MM, Farrag MM. The potential protective role of alpha-lipoic acid against acetaminophen-induced hepatic and renal damage. Toxicol. 2008;243:261-70. DOI: https://doi.org/10.1016/j.tox.2007.10.010

  5. Zhou N, Sun YP, Zheng XK, Wang QH, Yang YY, Bai ZY. A Metabolomics-based strategy for the mechanism exploration of traditional chinese medicine: Descurainia sophia seeds extract and fractions as a case study. Evid Based Compl Altern Med. 2017;28:51-73. DOI: https://doi.org/10.1155/2017/2845173

  6. Sun K, Li X, Liu JM, Wang JH, Li W, Sha Y. A novel sulphur glycoside from the seeds of Descurainia sophia (L.) Note. J Asian Nat Prod Res. 2005;7:853-6. DOI: https://doi.org/10.1080/1028602042000204072

  7. Barnes J, Anderson LA, Phillipson JD. Herbal medicines: a guide for healthcare professionals. Pharma Press. 2003 [acceso: 21/12/2021];107-118. Disponible en: https://cursosextensao.usp.br/pluginfile.php

  8. Nimrouzi M, Zarshenas MM. Phytochemical and pharmacological aspects of Descurainia sophia Webb ex Prantl: modern and traditional applications. Avicen J Phytomed. 2016;6:266-9. DOI: https://doi.org/10.22038/AJP.2016.4469

  9. Lee YJ, Kim NS, Kim H, Yi JM, Oh SM, Bang O. Cytotoxic and anti-inflammatory constituents from the seeds of Descurainia sophia. Arch Pharma Res. 2013;36:536-41. DOI: https://doi.org/10.1007/s12272-013-0066-x

  10. Yi JM, Kim YA, Lee YJ, Bang OS, Kim NS. Effect of an ethanol extract of Descurainia sophia seeds on Phase I and II drug metabolizing enzymes and P-glycoprotein activity in vitro. BMC Compl Altern Med. 2015;15:441-7. DOI: https://doi.org/10.1186/s12906-015-0965-0

  11. Wang A, Wang X, Li J, Cui X. Isolation and structure identification of chemical constituents from the seeds of Descurainia sophia (L.) Act Pharma Sinica. 2004 [acceso: 21/12/2021];39:46-51. Disponible en: https://europepmc.org/article/med/15127581

  12. Luo Y, Sun Z, Hu P, Wu Y, Yu W, Huang S. Effect of aqueous extract from Descurainia sophia (L.) Webb ex Prantl. on ventricular remodeling in chronic heart failure rats. Evid Based Compl Altern Med. 2018. DOI: https://doi.org/10.1155/2018/1904081

  13. Gholami-Ahangaran M, Rangsaz N, Azizi S. Evaluation of turmeric (Curcuma longa) effect on biochemical and pathological parameters of liver and kidney in chicken aflatoxicosis. Pharma Biol. 2016;54(5):780-7. DOI: https://doi.org/10.3109/13880209.2015.1080731

  14. Nikravesh H, Khodayar MJ, Mahdavinia M, Mansouri E, Zeidooni L, Dehbashi F. Protective effect of gemfibrozil on hepatotoxicity induced by cetaminophen in mice: the importance of oxidative stress suppression. APB. 2018;8(2):331-40. DOI: https://doi.org/10.15171/apb.2018.038

  15. Girish C, Koner BC, Jayanthi S, Ramachandra K, Rajesh B, Pradhan SC. Hepatoprotective activity of picroliv, curcumin and ellagic acid compared to silymarin on paracetamol induced liver toxicity in mice. Fund Clinic Pharma. 2009;23:735-45. DOI: https://doi.org/10.1111/j.1472-8206.2009.00722.x

  16. Aydın G, Ōzçelik N, Cicek E, Soyöz M. Histopathologic changes in liver and renal tissues induced by ochratoxin A and melatonin in rats. Hum Exp Toxicol. 2003;22:383-91. DOI: https://doi.org/10.1191/0960327103ht354oa

  17. Saleem M, Iftikhar H. A rare case of acetaminophen toxicity leading to severe kidney injury. Cureus. 2019;11:100-10. DOI: https://doi.org/10.7759/cureus.5003

  18. Roomi MW, Kalinovsky T, Ivanov V, Rath M, Niedzwiecki A. A nutrient mixture prevents acetaminophen hepatic and renal toxicity in ICR mice. Human Exp Toxicol. 2008;27(3):223-30. DOI: https://doi.org/10.1177/0960327108090276

  19. Bonkovsky HL, Kane RE, Jones DP, Galinsky RE, Banner B. Acute hepatic and renal toxicity from low doses of acetaminophen in the absence of alcohol abuse or malnutrition: evidence for increased susceptibility to drug toxicity due to cardiopulmonary and renal insufficiency. Hepatology. 1994;19(5):1141-8. DOI: http://dx.doi.org/10.1002/hep.1840190511

  20. Ghasemian SO, Gholami-Ahangaran M, Pourmahdi O, Ahmadi-Dastgerdi A. Dietary supplementation of protexin and artichoke extract for modulating growth performance and oxidative stress in broilers. Ank Üniv Vetr Fakültesi Dergisi. 2022. DOI: https://doi.org/10.33988/auvfd.833094

  21. Gholami‐Ahangaran M, Haj‐Salehi M, Ahmadi‐Dastgerdi A, Zokaei M. The advantages and synergistic effects of gunnera (Gundelia tournefortii L.) extract and protexin in chicken production. Vet Med Sci. 2021;7(6),2374-80. DOI: https://doi.org/10.1002/vms3.624

  22. Yapar K, Kart A, Karapehlivan M, Atakisi O, Tunca R, Erginsoy S, et al. Hepatoprotective effect of L-carnitine against acute acetaminophen toxicity in mice. Exp Toxicol Pathol. 2007;59(2):121-8. DOI: https://doi.org/10.1016/j.etp.2007.02.009

  23. Wu YL, Piao DM, Han XH, Nan JX. Protective effects of salidroside against acetaminophen-induced toxicity in mice. Biol Pharmaceut Bulletin. 2008;31(8):1523-9. DOI: http://dx.doi.org/10.1248/bpb.31.1523

  24. Mashhadi NS, Ghiasvand R, Askari G, Hariri M, Darvishi L, Mofid MR. Anti-oxidative and antiinflammatory effects of ginger in health and physical activity: review of current evidence. Int J Prev Med. 2013 [acceso: 21/12/2021];4:S36-S41. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665023

  25. Gepdiremen A, Mshvildadze V, Süleyman H, Elias R. Acute antiinflammatory activity of four saponins isolated from ivy: alpha-hederin, hederasaponin-C, hederacolchiside-E and hederacolchiside-F in carrageenan-induced rat paw edema. Phytomedicine. 2005; 12:440-4. DOI: https://doi.org/10.1016/j. phymed.2004.04.005

  26. Girish C, Koner BC, Jayanthi S, Ramachandra Rao K, Rajesh B, Pradhan SC. Hepatoprotective activity of picroliv, curcumin and ellagic acid compared to silymarin on paracetamol induced liver toxicity in mice. Fund Clin Pharma. 2009;23:735-45. DOI: https://doi.org/10.1111/j.1472- 8206.2009.00722.x

  27. Nicolson GL, Ash ME. Membrane lipid replacement for chronic illnesses, aging and cancer using oral glycerolphospholipid formulations with fructooligosaccharides to restore phospholipid function in cellular membranes, organelles, cells and tissues. Biochim Bioph Act (BBA) Biom. 2017;1859(9):1704-24. DOI: https://doi.org/10.1016/j.bbamem.2017.04.013

  28. Dennis JM, Witting PK. Protective role for antioxidants in acute kidney disease. Nutrients. 2017;9(7):718-23. DOI: https://doi.org/10.3390/nu9070718

  29. Ko JW, Shin JY, Kim JW, Park SH, Shin NR, Lee IC, et al. Protective effects of diallyl disulfide against acetaminophen-induced nephrotoxicity: a possible role of CYP2E1 and NF-κB. Food Chem Toxicol. 2017;102:156-65. DOI: https://doi.org/10.1016/j.fct.2017.02.021

  30. Ozatik FY, Teksen Y, Kadioglu E, Ozatik O, Bayat Z. Effects of hydrogen sulfide on acetaminophen-induced acute renal toxicity in rats. Int Urol Neph. 2019;51(4):745-54. DOI: https://doi.org/10.1007/s11255-018-2053-0

  31. Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, et al. Renal cell carcinoma. Nat Rev Dis Primers. 2017;3(1):1-19. DOI: https://doi.org/10.1038/nrdp.2017.9

  32. Kim SB, Seo YS, Kim HS, Lee AY, Chun JM, Moon BC, et al. Antiasthmatic effects of Lepidii seu descurainiae semen plant species in ovalbumin-induced asthmatic mice. J Ethnopharma. 2019;244:112083. DOI: https://doi.org/10.1016/j.jep.2019.112083

  33. Baek SJ, Chun JM, Kang TW, Seo YS, Kim SB, Seong B. Identification of epigenetic mechanisms involved in the anti-asthmatic effects of Descurainia sophia seed extract based on a multiomics approach. Molecules. 2018; 23: 2879. DOI: https://doi.org/10.3390/molecules23112879

  34. Park JS, Lim CJ, Bang OS, Kim NS. Ethanolic extract of Descurainia sophia seeds sensitizes A549 human lung cancer cells to TRAIL cytotoxicity by upregulating death receptors. BMC Compl Altern Med. 2016;16:115. DOI: https://doi.org/10.1186/s12906-016-1094-0

  35. Choopani R, Ghourchian A, Hajimehdipoor H, Kamalinejad M, Ghourchian F. Effect of Descurainia sophia (L.) Webb ex Prantl on adult functional constipation: a prospective pilot study. J. Evid. Based Compl Altern Med. 2017;22:646-51. DOI: https://doi.org/10.1177/2156587217703018

  36. Kim BY, Lee J, Kim NS. Helveticoside is a biologically active component of the seed extract of Descurainia sophia and induces reciprocal gene regulation in A549 human lung cancer cells. BMC genomics. 2015;16:713-8. DOI: https://doi.org/10.1186/s12864-015-1918-1

  37. Yi JM, Kim YA, Lee YJ, Bang OS, Kim NS. Effect of an ethanol extract of Descurainia sophia seeds on Phase I and II drug metabolizing enzymes and P-glycoprotein activity in-vitro. BMC Compl Altern Med. 2015;15:441-50. DOI: https://doi.org/10.1186/s12906-015-0965-0

  38. Shirazi MK, Azarnezhad A, Abazari MF, Poorebrahim M, Ghoraeian P, Sanadgol N, et al. The role of nitric oxide signaling in renoprotective effects of hydrogen sulfide against chronic kidney disease in rats: Involvement of oxidative stress, autophagy and apoptosis. J Cell Physiol. 2019;234:11411-23. DOI: https://doi.org/10.1002/jcp.27797

  39. Askari H, Abazari MF, Ghoraeian P, Torabinejad S, Nouri Aleagha M, Mirfallah Nassiri R. Ameliorative effects of hydrogen sulfide (NaHS) on chronic kidney disease-induced brain dysfunction in rats: implication on role of nitric oxide (NO) signaling. Metab Brain Dis. 2018;33:1945-54. DOI: https://doi.org/10.1007/s11011-018-0301-8




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Plant Med. 2021;26