medigraphic.com
SPANISH

Ginecología y Obstetricia de México

Federación Mexicana de Ginecología y Obstetricia, A.C.
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2023, Number 08

<< Back Next >>

Ginecol Obstet Mex 2023; 91 (08)

Pathophysiology of fetal programming and its impact on the future health

Vargas AVM, Beltrán BKM, Arroyo ÁK
Full text How to cite this article

Language: Spanish
References: 45
Page: 588-599
PDF size: 231.70 Kb.


Key words:

Fetal, Epigenetic, Gestational diabetes, Insulin, Glucocorticoids, Preeclampsia, Melatonin, Emphysema, Methylation, Dysbiosis.

ABSTRACT

Background: During intrauterine life, alterations in the fetal microenvironment caused by maternal nutritional and metabolic imbalances may leave epigenetic imprints and persistent effects on fetal adult life that will predispose the fetus to future chronic diseases.
Objective: To carry out a systematic review of the pathophysiology of fetal programming and its impact on the future health of the fetus.
Methodology: Search in the PubMed database of articles published in the last 10 years, in English or Spanish, with the MeSH "fetal programming"; "pathophysiology", with their corresponding translation. Original and review articles with PRISMA criteria for systematic reviews were included.
Results: Thirty-eight articles were found, and seven were added for complementary information and support for discussion. In their analysis the relationship between the reported pathophysiological conditions of under-, under- and over-nutrition, gestational diabetes mellitus, obesity, insulin resistance, glucocorticoids and preeclampsia with diseases of childhood, adolescence and adulthood is clear. Evidence of endocrine disruptors, melatonin and dysbiosis was found with diseases of childhood and adulthood. Also, disruption of angiogenesis during lung development leads to pulmonary arterial hypertension and emphysema, all caused by epigenetic fetal programming. Differences were found in the methylation pattern of preterm placentas compared to term placentas.
Conclusions: Abnormalities that occur during pregnancy modify fetal programming and give rise to the diseases that will appear during childhood, adolescence, and adulthood, because of changes in the methylation pattern of genes.


REFERENCES

  1. Barrera Reyes R, Fernández Carrocera LA. Programaciónmetabólica fetal. Perinatología y Reproducción Humana 2015; 29 (3): 99-105.

  2. Barker DJ. The fetal and infant origins of adult disease. BMJ1990; 301 (6761): 1111.

  3. Barker DJ. In utero programming of chronic disease. Clinicalscience (London, England: 1979) 1998; 95 (2): 115-28.

  4. Kwon EJ, Kim YJ. What is fetal programming?: a lifetimehealth is under the control of in utero health. ObstetGynecol Sci 2017; 60 (6): 506-19.

  5. Verny TR, Kelly J. The secret life of the unborn child. Dell;1988.

  6. Barker DJP, Osmond C, Winter PD, Margetts B, SimmondsSJ. Weight in infancy and death from ischaemic heartdisease. Lancet 1989; 334 (8663): 577-80.

  7. Barker DJP. The fetal origins of type 2 diabetes mellitus.Annals of Internal Medicine 1999; 130 (4_Part_1): 322-24.

  8. Hales CN, Barker DJP. Type 2 (non-insulin-dependent)diabetes mellitus: the thrifty phenotype hypothesis. Diabetology1992; 35 (7): 595-601.

  9. Aguilera-Méndez A. La nutrición materna y la programaciónmetabólica: el origen fetal de las enfermedades crónicasdegenerativas en los adultos. CIENCIA ergo-sum 2020;27: 392-400.

  10. Fowden AL, Giussani DA, Forhead AJ. Intrauterineprogramming of physiological systems: causes and consequences.Physiology 2006. https://doi.org/10.1152/physiol.00050.2005

  11. Carpinello OJ, DeCherney AH, Hill MJ. Developmentalorigins of health and disease: the history of the Barkerhypothesis and assisted reproductive technology. In:Seminars in Reproductive Medicine. Thieme MedicalPublishers, 2018; 177-82.

  12. Castro MJ. Programación fetal. Revista Digital de Postgrado2020; 9 (2). https://doi.org/10.37910/RDP.2020.9.2.e214

  13. McMillen IC, Robinson JS. Developmental origins of the metabolicsyndrome: prediction, plasticity, and programming.Physiol Rev 2005; 85 (2): 571-633. https://doi.org/10.1152/physrev.00053.2003

  14. Lucas A. Programming by early nutrition in man.The childhood environment and adult disease. WileyOnline Library 1991; 156: 38-55. https://doi.org/10.1002/9780470514047.ch4

  15. Macías-Sánchez KL, Zazueta-Novoa V, Mendoza-Macías CL,Rangel-Serrano Á, Padilla-Vaca F. Epigenética, más allá dela Genética. Acta Universitaria 2008; 18 (1): 50-56.

  16. Ruemmele FMR, Garnier-Lengliné H. ¿Por qué la genéticaes importante para la nutrición? Lecciones de investigaciónepigenética. Ann Nutr Metab 2012; 60 (3): 38-43.doi:10.1159/000337363

  17. Geutjes EJ, Bajpe PK, Bernards R. Targeting the epigenomefor treatment of cancer. Oncogene 2012; 31 (34): 3827-44.https://doi.org/10.1038/onc.2011.552

  18. Moore KL, Persaud TVN, Torchia MG. The developinghuman-e-book: clinically oriented embryology. ElsevierHealth Sciences, 2018.

  19. Chacín M, Rojas J, Pineda C, Rodríguez D, Pacheco MN,Gómez MM, et al. Predisposición humana a la Obesidad,Síndrome Metabólico y Diabetes: El genotipo ahorrador yla incorporación de los diabetogenes al genoma humanodesde la Antropología Biológica/Human predisposition toobesity, Metabolic syndrome and diabetes: saving gen.Diabetes Internacional 2011; 3 (2): 36.

  20. Barker DJP. Fetal Programming: Influences on Developmentand Disease in Later Life. NIH Monograph Series; 2000.

  21. Baker JL, Olsen LW, Sørensen TIA. Childhood body-massindex and the risk of coronary heart disease in adulthood.N Engl J Med 2007; 357 (23): 2329-37. doi: 10.1056/NEJMoa072515

  22. Cutfield WS, Hofman PL, Vickers M, Breier B, Blum WF,Robinson EM. IGFs and binding proteins in short childrenwith intrauterine growth retardation. The Journal of ClinicalEndocrinology & Metabolism 2002; 87 (1): 235-39. https://doi.org/10.1210/jcem.87.1.8188

  23. Hofman PL, Cutfield WS, Robinson EM, Bergman RN,Menon RK, Sperling MA, et al. Insulin resistance in shortchildren with intrauterine growth retardation. The Journalof Clinical Endocrinology & Metabolism 1997; 82 (2): 402-406. https://doi.org/10.1210/jcem.82.2.3752

  24. Ramírez-López MT, Vázquez Berrios M, Arco González R,Blanco Velilla RN, Decara del Olmo J, Suárez Pérez J, et al.El papel de la dieta materna en la programación metabólicay conductual: Revisión de los mecanismos biológicosimplicados. Nutrición Hospitalaria 2015; 32 (6): 2433-45.https://dx.doi.org/10.3305/nh.2015.32.6.9716

  25. Arends NJT, Boonstra VH, Duivenvoorden HJ, HofmanPL, Cutfield WS, Hokken‐Koelega ACS. Reduced insulinsensitivity and the presence of cardiovascular risk factorsin short prepubertal children born small for gestationalage (SGA). Clin Endocrinol (Oxf) 2005; 62 (1): 44-50. doi:10.1111/j.1365-2265.2004.02171.x

  26. Reynolds RM. Glucocorticoid excess and the developmentalorigins of disease: two decades of testing the hypothesis-2012 Curt Richter Award Winner. Psychoneuroendocrinology2013; 38 (1): 1-11. https://doi.org/10.1016/j.psyneuen.2012.08.012

  27. Koleganova N, Piecha G, Ritz E. Prenatal causes of kidneydisease. Blood Purif 2009; 27 (1): 48-52. https://doi.org/10.1159/000167008

  28. Yajnik CS, Deshpande SS, Jackson AA, Refsum H, Rao S,Fisher DJ, et al. Vitamin B12 and folate concentrationsduring pregnancy and insulin resistance in the offspring:the Pune Maternal Nutrition Study. Diabetology 2008; 51(1): 29-38. https://doi.org/10.1007/s00125-007-0793-y

  29. Rethlefsen ML, Kirtley S, Waffenschmidt S, et al. PRISMA-S:an extension to the PRISMA Statement for Reporting LiteratureSearches in Systematic Reviews. Syst Rev 2021; 10:39. https://doi.org/10.1186/s13643-020-01542-z

  30. Systematic Reviews: Information about the PRISMA statementand required elements.

  31. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, HoffmannTC, Mulrow CD, et al. The PRISMA 2020 statement: an updatedguideline for reporting systematic reviews. BMJ 2021(29); 372:n71. https://doi.org/10.1016/j.ijsu.2021.105906

  32. Alejandro EU, Mamerto TP, Chung G, Villavieja A, Gaus NL,Morgan E, et al. Gestational Diabetes Mellitus: A Harbingerof the Vicious Cycle of Diabetes. Int J Mol Sci 2020; 21 (14):5003. https://doi.org/10.3390/ijms21145003

  33. Fanni D, Gerosa C, Rais M, Ravarino A, Van Eyken P,Fanos V, et al. The role of neuropathological markers inthe interpretation of neuropsychiatric disorders: Focuson fetal and perinatal programming. NeuroscienceLetters 2018; 669: 75-82. https://doi.org/10.1016/j.neulet.2016.10.063

  34. Poulakos P, Mintziori G, Tsirou E, Taousani E, Savvaki D,Harizopoulou V, et al. Comments on gestational diabetesmellitus: from pathophysiology to clinical practice. Hormones2015; 14 (3): 335-44. https://doi.org/10.14310/horm.2002.157

  35. Azad MB, Moyce BL, Guillemette L, Pascoe CD, Wicklow B,McGavock JM, et al. Diabetes in pregnancy and lung healthin offspring: developmental origins of respiratory disease.Paediatric Respiratory Reviews 2017; 21: 19-26. https://doi.org/10.1016/j.prrv.2016.08.007

  36. Solano ME, Arck PC. Steroids, Pregnancy and Fetal Development.Front Immunol 2020; 10: 3017. https://doi.org/10.3389/fimmu.2019.03017

  37. Goldstein JM, Handa RJ, Tobet SA. Disruption of fetal hormonalprogramming (prenatal stress) implicates sharedrisk for sex differences in depression and cardiovasculardisease. Front Neuroendocrinol 2013; 35 (1): 140-58.https://doi.org/10.1016/j.yfrne.2013.12.001

  38. Tauqeer Z, Gomez G, Stanford FC. Obesity in Women:Insights for the Clinician. J Womens Health (Larchmt).2017/10/27. 2018; 27 (4): 444-57.https://doi.org/10.1089/jwh.2016.6196

  39. Myatt L. The prediction of preeclampsia: the way forward.American Journal of Obstetrics & Gynecology 2022;226 (2): S1102-S1107.e8. https://doi.org/10.1016/j.ajog.2020.10.047

  40. Moussa HN, Arian SE, Sibai BM. Management of hypertensivedisorders in pregnancy. Women’s Health 2014; 10 (4):385-404. https://doi.org/10.2217/WHE.14.32

  41. Rutkowska AZ, Diamanti-Kandarakis E. Polycystic ovarysyndrome and environmental toxins. Fertility and Sterility2016; 106 (4): 948-58. https://doi.org/10.1016/j.fertnstert.2016.08.031

  42. Lacroix M, Kina E, Hivert MF. Maternal/Fetal Determinantsof Insulin Resistance in Women During Pregnancy and inOffspring Over Life. Current Diabetes Reports 2013; 13(2): 238-44. https://doi.org/10.1007/s11892-012-0360-x

  43. Do Amaral FG, Andrade-Silva J, Kuwabara WMT, Cipolla-Neto J. New insights into the function of melatonin andits role in metabolic disturbances. Expert Rev EndocrinolMetab 2019; 14 (4): 293-300. https://doi.org/10.1080/17

  44. 446651.2019.163115844. Abman SH, Baker C, Gien J, Mourani P, Galambos C. TheRobyn Barst Memorial Lecture: Differences betweenthe fetal, newborn, and adult pulmonary circulations:relevance for age-specific therapies (2013 Grover Conferenceseries). Pulm Circ 2014; 4 (3): 424-40. https://doi.org/10.1086/677371

  45. Schoorlemmer J, Macías-Redondo S, Strunk M, Ramos-RuízR, Calvo P, Benito R, et al. Altered DNA methylation in humanplacenta after (suspected) preterm labor. Epigenomics 2020;12 (20): 1769-82. https://doi.org/10.2217/epi-2019-0346




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Ginecol Obstet Mex. 2023;91