medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2022, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2022; 25 (1)

Antibacterial activity of Streptomyces sp. Y15 against pathogenic bacteria and evaluation of culture media for antibiotic production

Evangelista-Martínez Z, Ríos-Muñiz DE, Gómez-Cano J, Montoya-Hidalgo AC, Ochoa-Solórzano RE
Full text How to cite this article

Language: English
References: 48
Page: 1-12
PDF size: 1373.51 Kb.


Key words:

Streptomyces, secondary metabolites, antibiotics, antimicrobial activity, pathogenic bacteria.

ABSTRACT

A notable characteristic of Streptomyces bacteria is their ability to produce secondary metabolites. The aims of this study were to identify streptomycetes that exert antibacterial activity against plant and human pathogenic bacteria, and to evaluate antibiotic production in various culture media. To identify streptomycetes that exert broad antibacterial activity using the agar-disk diffusion method, 31 isolates were screened, after which a selected isolate was cultured in nine different growth media to evaluate the production of inhibitory metabolites. Three streptomycete isolates were identified that exert inhibitory activity against at least four pathogens species. The Y15 isolate showed broad antibacterial activity on Escherichia coli, Staphylococcus epidermidis, Listeria monocytogenes, Staphylococcus aureus, Pseudomonas syringae pv. phaseolicola, Dickeya dadantii, and Pectobacterium carotovorum. The production rate of antimicrobial metabolites was maintained when Y15 was grown in culture media containing limited organic nitrogen sources. The presence of organic nitrogen compounds in the media decreased the production of antibacterial metabolites. The Y15 isolate was identified by 16S rDNA gene sequencing as member of the genus Streptomyces. We show that the composition of the fermentation medium is likely an important factor for modulating antibiotic production by streptomycetes, with impacts on the quantity and diversity of antimicrobial metabolites production.


REFERENCES

  1. Al-Ansari, M., Alkubaisi, N., Vijayaragavan, P. & Murugan,K. (2019). Antimicrobial potential of Streptomyces sp. tothe gram positive and gram negative pathogens. Journalof Infection and Public Health, 12, 861-866. https://doi.org/10.1016/j.jiph.2019.05.016

  2. Al Farraj, D. A., Varghese, R., Vágvölgyi, C., SolimanElshikh, M., Alokda, A. M. & Hossam Mahmoud, A.(2020). Antibiotics production in optimized culturecondition using low cost substrates from Streptomycessp. AS4 isolated from mangrove soil sediment. Journalof King Saud University-Science, 32, 1528-1535. https://doi.org/10.1016/j.jksus.2019.12.008

  3. Amos, G. C. A., Borsetto, C., Laskaris, P., Krsek, M., Berry,A. E., Newsham, K. K., Calvo-Bado, L., Pearce, D. A.,Vallin, C. & Wellington, E. M. H. (2015). Designingand implementing an assay for the detection of rare anddivergent NRPS and PKS clones in European, Antarcticand Cuban soils. PLoS ONE, 10, e0138327. https://doi.org/10.1371/journal.pone.0138327

  4. Ayuso-Sacido, A. & Genilloud, O. (2005). New PCRprimers for the screening of NRPS and PKS-I systemsin actinomycetes: detection and distribution of thesebiosynthetic gene sequences in major taxonomic groups.Microbial Ecology, 49, 10–24. https://doi.org/10.1007/s00248-004-0249-6

  5. Barbuto Ferraiuolo, S., Restaino, O. F., Gutiérrez-del-Río, I., Ventriglia, R., Cammarota, M., Villar, C. J.,Lombó, F. & Schiraldi, C. (2021). Optimization of preinoculum,fermentation process parameters and precursorsupplementation conditions to enhance apigeninproduction by a recombinant Streptomyces albusstrain. Fermentation, 7, 161. https://doi.org/10.3390/fermentation7030161

  6. Boukaew, S., Cheirsilp, B., Prasertsan, P. & Yossan, S.(2021). Antifungal effect of volatile organic compoundsproduced by Streptomyces salmonis PSRDC-09 againstanthracnose pathogen Colletotrichum gloeosporioidesPSU-03 in postharvest chili fruit. Journal of AppliedMicrobiology, 131, 1452-1463. https://doi.org/10.1111/jam.15037

  7. Braña, A. F., Wolfe, W. & Demain, A. L. (1985). Ammoniumrepression of cephalosporin production by Streptomycesclavuligerus. Canadian Journal of Microbiology, 31,736-743. https://doi.org/10.1139/m85-138

  8. Breijyeh, Z., Jubeh, B. & Karaman, R. (2020). Resistance ofGram-negative bacteria to current antibacterial agentsand approaches to resolve it. Molecules, 25, 1340. https://doi.org/10.3390/molecules25061340

  9. Castillo, U., Myers, S., Browne, L., Strobel, G., Hess, W.M., Hanks, J. & Reay, D. (2005). Scanning electronmicroscopy of some endophytic streptomycetes insnakevine-Kennedia nigricans. Scanning, 27, 305-311.https://doi.org/10.1002/sca.4950270606

  10. Castro, J. M., Liras, P., Cortes, J. & Martin, J. F. (1985).Regulation of alpha-aminoadipyl-valine, isopenicillinN synthetase, isopenicillin N isomerase anddeacetoxycephalosporin C synthetase by nitrogen sourcesin Streptomyces lactamdurans. Applied of Microbiologyand Biotechnology, 22, 32-40. https://doi.org/10.1007/BF00252153

  11. Challis, G. L. & Hopwood, D. A. (2003). Synergy andcontingency as driving forces for the evolution of multiplesecondary metabolite production by Streptomyces species.Proceedings of the National Academy of Sciences of theUnited States of America, 100, 14555–14561. https://doi.org/10.1073/pnas.1934677100

  12. Chater, K. F. (2016). Recent advances in understandingStreptomyces. F1000 Research, 5, 2795. https://doi.org/10.12688/f1000research.9534.1

  13. CLSI, Clinical and Laboratory Standards Institute.(2012). Performance standards for antimicrobial disksusceptibility tests. Document M02-A11. ApprovedStandard. 11th ed. Wayne, PA, USA: CLSI.

  14. de Lima Procópio, R. E., da Silva, I. R., Martins, M. K., deAzevedo, J. L. & de Araújo, J. M. (2012). Antibioticsproduced by Streptomyces. The Brazilian Journalof Infectious Diseases, 16, 466-471. https://doi.org/10.1016/j.bjid.2012.08.014

  15. Evangelista-Martínez, Z. (2014). Isolation and characterizationof soil Streptomyces species as a potential biologicalcontrol agent against fungal plant pathogens. WorldJournal of Microbiology and Biotechnology, 30, 1639–

  16. 1647. https://doi.org/10.1007/s11274-013-1568-x16. González, I., Ayuso-Sacido, A., Anderson, A. &Genilloud, O. (2005). Actinomycetes isolated fromlichens: evaluation of their diversity and detectionof biosynthetic gene sequences. FEMS Microbiologyand Ecology, 54, 401–415. https://doi.org/10.1016/j.femsec.2005.05.004

  17. Grasso, L. L., Martino, D. C. & Alduina, R. (2016). Productionof antibacterial compounds from Actinomycetes, InActinobacteria-Basics and Biotechnological Applications(pp. 177–198). London, UK: IntechOpen. http://dx.doi.org/10.5772/61525

  18. Jones, S. & Elliot, M. (2017). Streptomyces exploration:competition, volatile communication and new bacterialbehaviours. Trends in Microbiology, 25, 522-531. http://dx.doi.org/10.1016/j.tim.2017.02.001

  19. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. &Hopwood, D. A. (2000). Practical Streptomyces genetics:A laboratory manual. Norwich, United Kingdom: TheJohn Innes Foundation.

  20. Komaki, H., Sakurai, K., Hosoyama, A., Kimura, A., Igarashi,Y. & Tamura, T. (2018). Diversity of nonribosomal peptidesynthetase and polyketide synthase gene clusters amongtaxonomically close Streptomyces strains. ScientificReports, 8, 6888. https://doi.org/10.1038/s41598-018-24921-y

  21. Kong, D., Wang, X., Nie, J. & Niu, G. (2019). Regulationof antibiotic production by signaling molecules inStreptomyces. Frontiers in Microbiology, 10, 2927.https://doi.org/10.3389/fmicb.2019.02927

  22. Lee, L. H., Zainal, N., Azman, A. S., Eng, S. K., Goh, B.H., Yin, W. F., Ab Mutalib, N. S. & Chan, K. G. (2014).Diversity and antimicrobial activities of actinobacteriaisolated from tropical mangrove sediments in Malaysia.The Scientific World Journal, 2014, ID698178. https://doi.org/10.1155/2014/698178

  23. Manteca, A. & Yagüe, P. (2018). Streptomyces as a sourceof antimicrobials: novel approaches to activate crypticsecondary metabolite pathways. In Kırmusaoğlu S(Ed.). Antimicrobials, Antibiotic Resistance, AntibiofilmStrategies and Activity Methods. (pp. 1-21). InTech,India. https://doi.org/10.5772/intechopen.81812

  24. Martínez-Núñez, M. A. & López y López, V. E. (2016).Nonribosomal peptides synthetases and their applicationsin industry. Sustainable Chemical Processes, 4, 13.https://doi.org/10.1186/s40508-016-0057-6

  25. Nett, M., Ikeda, H. & Moore, B. S. (2009). Genomicbasis for natural product biosynthetic diversity in theactinomycetes. Natural Product Reports, 26, 1362–1384.https://doi.org/10.1039/b817069j

  26. Prestinaci, F., Pezzotti, P. & Pantosti, A. (2015). Antimicrobialresistance: a global multifaceted phenomenon. Pathogensand Global Health, 109, 309–318. https://doi.org/10.1179/2047773215Y.0000000030

  27. Qi, D., Zou, L., Zhou, D., Chen, Y., Gao, Z., Feng, R., Zhang,M., Li, K., Xie, J. & Wang, W. (2019). Taxonomy andbroad-spectrum antifungal activity of Streptomycessp. SCA3-4 isolated from rhizosphere soil of Opuntiastricta. Frontiers in Microbiology, 10, 1390. https://doi.org/10.3389/fmicb.2019.01390

  28. Raytapadar, S. & Paul, A. K. (2001). Production of anantifungal antibiotic by Streptomyces aburaviensis 1DA-28. Microbiological Research, 155, 315-323. https://doi.org/10.1016/s0944-5013(01)80010-0

  29. Risdian, C., Mozef, T. & Wink, J. (2019). Biosynthesis ofpolyketides in Streptomyces. Microorganisms, 7, 124.https://doi.org/10.3390/microorganisms7050124

  30. Ruanpanun, P., Laatsch, H., Tangchitsomkid, N. & Lumyong,S. (2011). Nematicidal activity of fervenulin isolatedfrom a nematicidal actinomycete, Streptomyces sp. CMUMH021,on Meloidogyne incognita. World Journal ofMicrobiology and Biotechnology, 27, 1373-1380. https://doi.org/10.1007/s11274-010-0588-z3

  31. Ruiz, B., Chávez, A., Forero, A., García-Huante, Y.,Romero, A., Sánchez, M., Rocha, D., Sánchez,B., Rodríguez-Sanoja, R., Sánchez, S. & Langley,E. (2010). Production of microbial secondarymetabolites: regulation by the carbon source. CriticalReviews in Microbiology, 36, 146–167. https://doi.org/10.3109/10408410903489576

  32. Rutledge, P. J. & Challis, G. L. (2015). Discovery of microbialnatural products by activation of silent biosynthetic geneclusters. Nature Reviews Microbiology, 13, 509–523.https://doi.org/10.1038/nrmicro3496

  33. Sánchez, S., Chávez, A., Forero, A., García-Huante, Y.,Romero, A., Sánchez, M., Rocha, D., Sánchez, B.,Avalos, M, Guzmán-Trampe, S., Rodríguez-Sanoja, R.,Langley, E. & Ruiz, B. (2010). Carbon source regulationof antibiotic production. The Journal of Antibiotics, 63,442-459. https://doi.org/10.1038/ja.2010.78

  34. Shang, Z., Li, X. M., Li, C. S. & Wang, B. G. (2012). Diversesecondary metabolites produced by marine-derivedfungus Nigrospora sp. MA75 on various culture media.Chemistry and biodiversity, 9, 1338–1348. https://doi.org/10.1002/cbdv.201100216

  35. Shapiro, S. (1989). Nitrogen assimilation in actinomycetesand the influence of nitrogen nutrition on actinomycetesecondary metabolism, In Shapiro, S. (Ed.). Regulationof secondary metabolism in actinomycetes. (pp. 135–211)Boca Raton: CRC Press.

  36. Sharma, P. & Thakur, D. (2020). Antimicrobial biosyntheticpotential and diversity of culturable soil actinobacteriafrom forest ecosystems of Northeast India. ScientificReports, 10, 4104. https://doi.org/10.1038/s41598-020-60968-6

  37. Sheperd, M. D., Kharel, M. K., Bosserman, M. A. & Rohr,J. (2010). Laboratory Maintenance of Streptomycesspecies. In Cowen LE, Grigg M, McBride A, Payne SM,Stevenson B (Eds.). Current Protocols in Microbiology.Kentucky, US: John Wiley & Sons, Inc.

  38. Shirling, E. B. & Gottlieb, D. (1966). Methods forcharacterization of Streptomyces species. InternationalJournal of Systematic Bacteriology, 16, 313–340. https://doi.org/10.1099/00207713-16-3-313

  39. Soccol, C. R., Ferreira da Costa, E. S., Junior Letti, L. A., Karp,S. G., Lorenci, W. A. & Porto de Souza, V. L. (2017).Recent developments and innovations in solid statefermentation. Biotechnology Research and Innovation, 1,52-71. https://doi.org/10.1016/j.biori.2017.01.002

  40. Tanaka, Y., Taki, A., Masuma, R. & Omura, S. (1986).Mechanism of nitrogen regulation of protylonolidebiosynthesis in Streptomyces fradiae. The Journalof Antibiotics, 39, 813-821. https://doi.org/10.7164/antibiotics.39.813

  41. VanderMolen, K. M., Raja, H. A., El-Elimat, T. & Oberlies,N. H. (2013). Evaluation of culture media for theproduction of secondary metabolites in a natural productsscreening program. AMB Express, 3, 71. https://doi.org/10.1186/2191-0855-3-71

  42. Vicente Dos Reis, G., Abraham, W. R., Grigoletto, D. F., deCampos, J. B., Marcon, J., da Silva, J. A., Quecine, M.C., de Azevedo, J. L., Ferreira, A. G. & de Lira, S. P.(2019). Gloeosporiocide, a new antifungal cyclic peptidefrom Streptomyces morookaense AM25 isolated from theAmazon bulk soil. FEMS Microbiology and Letters, 366,fnz175. https://doi.org/10.1093/femsle/fnz175

  43. Wang, H. & Chen, H. (2016). Clavulanic acid production byStreptomyces clavuligerus using solid state fermentationon polyurethane foam. Trends in Renewable Energy, 2,2-12. http://dx.doi.org/10.17737/tre.2016.2.1.0018

  44. Wang, Z., Yu, Z., Zhao, J., Zhuang, X., Cao, P., Guo, X.,Liu, C. & Xiang, W. (2020). Community composition,antifungal activity and chemical analyses of ant-derivedActinobacteria. Frontiers in Microbiology, 11, 201.https://doi.org/10.3389/fmicb.2020.00201

  45. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane,D. J. (1991). 16S ribosomal DNA amplification forphylogenetic study. Journal of Bacteriology, 173, 697–703. https://doi.org/10.1128/jb.173.2.697-703.1991

  46. Wohlleben, W., Mas, Y., Stegmann, E. & Ziemert, N. (2016).Antibiotic drug discovery. Microbial Biotechnology, 9,541–548. https://doi.org/10.1111/1751-7915.12388

  47. Zhang, H., Zhou, Q., Lou, T., Wang, S. & Ruan, H. (2017).Draft genome sequence of broad-spectrum antibioticsparsomycin-producing Streptomyces sparsogenes ATCC25498 from the American Type Culture Collection.Journal of Global Antimicrobial Resistance, 11, 159–160. https://doi.org/10.1016/j.jgar.2017.10.011

  48. Zhu, Y., Smits, J. P., Knol, W. & Bol, J. (1994). A novel solidstatefermentation system using polyurethane foam asinert carrier. Biotechnology Letters, 16, 643–648. https://doi.org/10.1007/BF00128615




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2022;25