medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2022, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2022; 25 (1)

Prebiotics and microbiota: critical factors in the metabolic syndrome

Peña-Montes C, Ramírez-Higuera A, Morales-Cano KL, Lagunes-Vela KG, Mendoza-García PG, Oliart-Ros RM
Full text How to cite this article

Language: Spanish
References: 141
Page: 1-18
PDF size: 639.18 Kb.


Key words:

microbiota, metabolic syndrome, prebiotics, treatment, prevention.

ABSTRACT

Metabolic syndrome (MetS) is a complex global public health problem, and related diseases are a cause of death, which in 2020 was 43%. Treatment and prevention of MetS without drugs have a significant impact by addressing the problem comprehensively. With lifestyle changes, modifying the diet to include bioactive compounds that favor the gut microbiota (IM) and increased physical activity. Because of the IM role in the pathogenesis of MetS, probiotics and prebiotics are incorporated into the diet individually or mixed with foods or supplements in recent years. The present review defines the role of prebiotics in modifying the microbiota for the treatment and prevention of this condition.


REFERENCES

  1. Agheli, N., Kabir, M., Berni-Canani, S., Petitjean, E., Boussairi,A., Luo, J., Bornet, F., Slama, G. & Rizkalla, S. W. (1998).Plasma lipids and fatty acid synthase activity are regulatedby short-chain fructo- oligosaccharides in sucrose-fedinsulin-resistant rats. Journal of Nutrition,128, 1283–1288.DOI: 10.1093/jn/128.8.1283.

  2. Aguilar-Salinas, C. A. & Viveros-Ruiz, T. (2019). Recentadvances in managing/understanding the metabolicsyndrome. F1000Research, 8, 1-9. DOI: 10.12688/f1000research.17122.1.

  3. Ahren, B. & Schmitz, O. (2004). GLP-1 receptor agonistsand DPP-4 inhibitors in the treatment of type 2 diabetes.Hormone and Metabolic Research, 36, 867–876. DOI:10.1055/s-2004-826178.

  4. Alliet, P, Scholtens, P., Raes, M., Hensen, K., Jongen, H.,Rummens, J. L., Boehm, G. & Vandenplas, Y. (2007).Effect of prebiotic galacto-oligosaccharide, long-chainfructo-oligosaccharide infant formula on serum cholesteroland triacylglycerol levels. Nutrition: The InternationalJournal of Applied and Basic Nutritional Sciences, 23(10),719–723. DOI: 10.1016/j.nut.2007.06.011.

  5. Almeida, A., Mitchell, A. L., Boland, M., Forster, S. C., Gloor,G. B., Tarkowska A., Lawley, T. D. & Finn, R. D. (2019). Anew genomic blueprint of the human gut microbiota. Nature,568(7753), 499-504. DOI: 10.1038/s41586-019-0965-1.

  6. Barile, D. & Rastall, R. A. (2013). Human milk and relatedoligosaccharides as prebiotics. Current Opinionin Biotechnology, 24, 214-219, DOI: 10.1016/j.copbio.2013.01.008.

  7. Bergström, J. H., Birchenough, G. M., Katona, G., Schroeder,B. O., Schütte, A., Ermund, A., Johansson, M. E. &Hansson G. C. (2016). Gram-positive bacteria are heldat a distance in the colon mucus by the lectin-like proteinZG16. Proceedings of the National Academy of Sciencesof the United States of America, 113, 13833-13838. DOI:10.1073/pnas.1611400113.

  8. Bindels, L. B., Delzenne, N. M., Cani, P. D. & Walter, J. (2015).Towards a more comprehensive concept for prebiotics.Nature Reviews Gastroenterology & Hepatology, 12(5),303–310. DOI: 10.1038/nrgastro.2015.47.

  9. Bridgeman, S. C., Northrop, W., Melton, P. E., Ellison, G.C., Newsholme, P. & Mamotte, C. D. (2020). Butyrate,generated by gut microbiota, and its therapeutic role inmetabolic syndrome. Pharmacological Research, 160, 105174. DOI: 10.1016/j.phrs.2020.105174.

  10. Brighenti, F., Casiraghi, M. C., Canzi, E. & Ferrari, A. (1999).Effect of consumption of a ready-to-eat breakfast cerealcontaining inulin on the intestinal milieu and blood lipidsin healthy male volunteers. European Journal of ClinicalNutrition, 53(9), 726–733. DOI: 10.1038/sj.ejcn.1600841.

  11. Brusserolles, J., Gueux, E., Rock, E., Demigne, C., Mazur, A.& Rayssiguier, Y. (2003). Oligofructose protects againstthe hypertriglyceridemic and pro-oxidative effects of a highfructose diet in rats. Journal of Nutrition,133, 1903–1908.DOI: 10.1093/jn/133.6.1903.

  12. Caesar, R., Tremaroli, V., Kovatcheva, D. P., Cani, P. D. &Backhed, F. (2015). Crosstalk between gut microbiota anddietary lipids aggravates WAT inflammation through TLRsignaling. Cell Metabolism, 22(4),658-668. DOI: 10.1016/j.cmet.2015.07.026.

  13. Cani, P. D. & Delzenne, N. M. (2009). The role of the gutmicrobiota in energy metabolism and metabolic disease.Current Pharmaceutical Design, 15(13), 1546-1558. DOI:10.2174/138161209788168164.

  14. Cani, P. D., Knauf, C., Iglesias, M. A., Drucker, D. J., Delzenne,N. M. & Burcelin, R. (2006). Improvement of glucosetolerance and hepatic insulin sensitivity by oligofructoserequires a functional glucagon-like peptide 1 receptor.Diabetes, 55, 1484–1490. DOI: 10.2337/db05-1360.

  15. Cani, P. D., Neyrinck, A. M., Fava, F., Knauf, C., Burcelin, R.G., Tuohy, K. M., Gibson, G. R. & Delzenne, N. M. (2007).Selective increases of bifidobacteria in gut microfloraimprove high-fat-diet-induced diabetes in mice through amechanism associated with endotoxaemia. Diabetologia,50, 2374-2383. DOI: 10.1007/s00125-007-0791-0.

  16. Cani, P. D., Neyrinck, A. M., Maton, N. & Delzenne, N. M.(2005). Oligofructose promotes satiety in rats fed a highfatdiet: involvement of glucagon-like Peptide-1. ObesityResearch, 13, 1000-1007. DOI: 10.1038/oby.2005.117.

  17. Cani, P. D, Possemiers, S., Van de Wiele, T., Guiot, Y., Everard,A., Rottier, O., Geurts, L., Naslain, D., Neyrinck, A.,Lambert, D. M., Muccioli, G. G. & Delzenne, N. M.(2009). Changes in gut microbiota control inflammation inobese mice through a mechanism involving GLP-2-drivenimprovement of gut permeability. Gut, 58, 1091-1103. DOI:10.1136/gut.2008.165886.

  18. Carabottia, M., Sciroccoa, A., Masellib, M. A. & Severia, C.(2015). The gut-brain axis: Interactions between entericmicrobiota, central and enteric nervous systems. Annalsof Gastroenterology, 28(1), 1-7. DOI: PMID: 25830558;PMCID: PMC4367209.

  19. Carding, S., Verbeke, K., Vipond, D. T., Corfe, B. M. &Owen, L. J. (2015). Dysbiosis of the gut microbiota indisease. Microbial Ecology In Health And Disease, 26,26191. DOI: 10.3402/mehd. v26.26191.

  20. Causey, J. L. (2000). Effects of dietary inulin on serum lipids,blood glucose and the gastrointestinal environment inhypercholesterolemic men. Nutrition Research, 20, 191–201. https://doi.org/10.1016/S0271-5317(99)00152-9.

  21. Cerdó, T., García-Santos, J. A., Bermúdez, M. & Campoy,C. (2019). The Role of Probiotics and Prebiotics in thePrevention and Treatment of Obesity. Nutrients, Mar 15;11(3), 635. DOI: 10.3390/nu11030635.

  22. Chaplin, A., Carpéné, C. & Mercader, J. (2018). Resveratrol,metabolic syndrome, and gut microbiota. Nutrients, 10,1651. https://doi.org/10.3390/nu10111651.

  23. Chastang, T., Pozzobon, V., Taidi, B., Courot, E., Clément, C.& Pareau, D. (2018). Resveratrol production by grapevinecells in fed-batch bioreactor: Experiments and modelling.Biochemical Engineering Journal, 131, 9–16. https://doi.org/10.1016/j.bej.2017.12.009.

  24. Chávez-Carbajal, A., Nirmalkar, K., Pérez-Lizaur, A.,Hernández-Quiroz, F., Ramírez-Del-Alto, S., García-Mena,J. & Hernández-Guerrero, C. (2019). Gut Microbiota andPredicted Metabolic Pathways in a Sample of MexicanWomen Affected by Obesity and Obesity Plus MetabolicSyndrome. International Journal of Molecular Sciences,21, 20(2), 438. DOI: 10.3390/ijms20020438.

  25. Chen, X. & Devaraj, S. (2018). Gut Microbiome in Obesity,Metabolic Syndrome, and Diabetes. Current DiabetesReports, 18(12), 129. DOI: 10.1007 / s11892-018-1104-3.

  26. Chih, Y. H., You, L. T., Hong, R. Y. & Li, T. H. (2019). TheEffects of Resveratrol in the Treatment of MetabolicSyndrome. International Journal of Molecular Sciences,20, 535. DOI: 10.3390 / ijms20030535.

  27. Clarke, S. F., Murphy, E. F., O’Sullivan, O., Lucey, A. J.,Humphreys, M., Hogan, A., Hayes, P., O’Reilly, M., Jeffery,I. B., Wood-Martin, R., Kerins, D. M., Quigley, E., Ross,R. P., O´Toole, P.W., Molloy, M.G., Falvey, F., Shanahan,F. & Cotter, P. D. (2014). Exercise and associated dietaryextremes impact on gut microbial diversity. Gut. BMJEvidence-Based Medicine, 63, 1913–1920. DOI: 10.1136/ gutjnl-2013-306541.

  28. Cloetens, L., Ulmius, M., Johansson, P. A., Akesson, B. & Onning,G. (2012). Role of dietary beta-glucans in the prevention ofthe metabolic syndrome. Nutrition Reviews, 70(8), 444–458.84. DOI: 10.1111 / j.1753-4887.2012.00494x.

  29. Corzo, N.,Alonso, J. L.,Azpiroz, F.,Mateos, A., Inmaculada,P.G.,Francisco, J., Ruas, M., P., Rupérez, A., Pilar, Sanz. M. L.& Clemente, A. (2015). Prebiotics; concept, properties andbeneficial effects. Nutrición Hospitalaria, 31(Supl. 1), 99-118. DOI: 10.3305 / nh.2015.31.sup1.8715.

  30. Dai, Z., Lyu, W., Xie, M., Yuan, Q., Ye, H., Hu, B., Zhou, L. &Zeng, X. (2017). Effects of α-Galactooligosaccharides fromChickpeas on High-Fat-Diet-Induced Metabolic Syndromein Mice. Journal of Agricultural and Food Chemistry,65(15), 3160-3166. DOI: 10.1021 / acs. jafc.7b00489.

  31. Daubioul, C. A., Taper, H. S., Wispelaere, L. D. & Delzenne, N.M. (2000). Dietary oligofructose lessens hepatic steatosisbut does not prevent hypertriglyceridemia in obese Zuckerrats. Journal of Nutrition, 130, 1314–1319. DOI: 10.1093/ jn / 130.5.1314.

  32. Davani-Davari, D., Negahdaripour, M., Karimzadeh, I.,Seifan, M., Mohkam, M., Masoumi, S. J., Berenjian, A. &Ghasemi, Y. (2019). Prebiotics: Definition, Types, Sources,Mechanisms, and Clinical Applications. Foods, 8, 92. DOI:10.3390 / alimentos8030092.

  33. Davila, A. M., Blachier, F., Gotteland, M., Andriamihaja, M.,Benetti, P. H., Sanz, Y. & Tomé, D. (2013). Intestinalluminal nitrogen metabolism: role of the gut microbiotaand consequences for the host. Pharmacological Research,68(1), 95-107. DOI: 10.1016/j.phrs.2012.11.005.

  34. Dehghan, P., Gargari, B. P., Jafar-Abadi, M. A. & Aliasgharzadeh,A. (2014). Inulin controls inflammation and metabolicendotoxemia in women with type 2 diabetes mellitus: Arandomized-controlled clinical trial. International Journalof Food Sciences and Nutrition, 65, 117–123. DOI: 10.3109/ 09637486.2013.836738.

  35. De la Iglesia, R., Viviana, L. K., Maria Angeles, Z., Jose Alfredo,M., Guillermo, R., A. & Ramirez, de M. (2016). DietaryStrategies Implicated in the Prevention and Treatment ofMetabolic Syndrome. International Journal of MolecularSciences, 17, 1877. DOI: 10.3390 / ijms17111877.

  36. Delmée, E., Cani, P. D., Gual, G., Knauf, C., Burcelin, R.,Maton, N. & Delzenne, N. M., (2006). Relation betweencolonic proglucagon expression and metabolic response tooligofructose in high fat diet-fed mice. Life Sciences, 79,1007–1013. DOI: 10.1016/j.lfs.2006.05.013.

  37. De Sordi, L., Lourenço, M. & Debarbieux, L. (2019). The BattleWithin: Interactions of Bacteriophages and Bacteria in theGastrointestinal Tract. Cell Host Microbe, 13, 25(2), 210-218. DOI: 10.1016 / j. chom.2019.01.018.

  38. Devkota, S., Wang, Y., Musch, M. W., Leone, V., Fehlner, P. H. &Nadimpalli, A. (2012). Dietary-fat-induced taurocholic acidpromotes pathobiont expansion and colitis in Il10−/− mice.Nature, 487(7405),104-108. DOI: 10.1038 / nature11225.

  39. Dewulf, E. M., Cani, P. D., Claus, S. P., Fuentes, S., Puylaert, P.G., Neyrinck, A. M., Bindels, L. B., de Vos W. M., Gibson,G. R., Thissen, J. P. & Delzenne, N. M. (2013) Insight intothe prebiotic concept: lessons from an exploratory, doubleblind intervention study with inulin-type fructans in obesewomen. Gut, BMJ Evidence-Based Medicine, 62, 1112.DOI: 10.1136 / gutjnl-2012-303304.

  40. Dewulf, E. M., Cani, P. D., Neyrinck, A. M., Possemiers, S.,Van Holle, A., Muccioli, G. G., Deldicque, L., Bindels, L.B., Pachikian, B. D., Sohet, F. M., Mignolet, E., Francaux,M., Larondelle, Y. & Delzenne, N. (2011). Inulin-typefructans with prebiotic properties counteract GPR43overexpression and PPARgamma-related adipogenesis inthe white adipose tissue of high-fat diet-fed mice. Journalof Nutritional Biochemistry, 22(8), 712–22. DOI: 10.1016/ j. jnutbio.2010.05.009.

  41. Diether, N. E. & Willing, B.P. (2019). Microbial Fermentationof Dietary Protein: An Important Factor in Diet-Microbe-Host Interaction. Microorganisms, Jan 13; 7(1), 19. DOI:10.3390/microorganisms7010019.

  42. Djouzi, Z. & Andrieux C. (1997). Compared effects of threeoligosaccharides on metabolism of intestinal microflora inrats inoculated with a human faecal flora. British Journalof Nutrition, 78, 313–324. DOI: 10.1079 / bjn19970149.

  43. Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. (2016). Gutbiogeography of the bacterial microbiota. Nature Reviewsin Microbiology, 14, 20–32. DOI: 10.1038 / nrmicro3552.

  44. Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E.,Dethlefsen, L., Sargent, M., Gill, S., Nelson, K. E. &Relman, D. A. (2005). Diversity of the human intestinalmicrobial flora. Science, 308(5728), 1635-1638. DOI:10.1126/science.1110591.

  45. Edrisi, F. Salehi, M. Ahmadi, A. Fararoei, M., Rusta, F. &Mahmoodianfard, S. (2018). Effects of supplementationwith rice husk powder and rice bran on inflammatoryfactors in overweight and obese adults following an energyrestricteddiet: A randomized controlled trial. EuropeanJournal of Nutrition, 57, 833–843. DOI: 10.1007 / s00394-018-1622-4.

  46. Everard, A., Lazarevic, V., Derrien, M., Girard, M., Muccioli,G. G., Neyrinck, A. M., Possemiers, S., Van Holle, A.,François, P., de Vos W. M., Delzenne, N. M., Schrenzel,J. & Cani, P. D. (2011). Responses of gut microbiota andglucose and lipid metabolism to prebiotics in genetic obeseand diet-induced leptin-resistant mice. Diabetes, 60, 2775-2786. DOI: 10.2337 / db11-0227.

  47. Fava, F., Gitau, R., Griffin, B. A., Gibson, G. R., Tuohy, K.M. & Lovegrove, J. A. (2013). The type and quantify ofdietary fat and carbohydrate alter faecal microbiome andshort-chain fatty acid excretion in a metabolic syndrome´at-risk´population. International Journal of Obesity, 37(2),216-223. DOI: 10.1038 / ijo.2012.33.

  48. Feng, W., Ao, H. & Peng, C. (2018). Gut Microbiota, Short-Chain Fatty Acids, and Herbal Medicines. Frontiers inPharmacology, 9, 1354. DOI: 10.3389/fphar.2018.01354.

  49. Fernández, J., Redondo, B. S., Gutiérrez, del R. I., Miguélez,E. M., Villar, C. J. & Lombó, F. (2016). Colon microbiotafermentation of dietary prebiotics towards short-chain fattyacids and their roles as anti-inflammatory and antitumouragents: a review. Journal of Functional Foods, 25, 511-522.https://doi.org/10.1016/j.jff.2016.06.032.

  50. Festi, D., Schiumerini, R., Eusebi, L. H., Marasco, G., Taddia,M. & Colecchia, A. (2014). Gut microbiota and metabolicsyndrome. World Journal of Gastroenterology, 20, 16079-16094. DOI: 10.3748/wjg. v20.i43.16079.

  51. García, A. L., Otto, B. & Reich, S. C. (2007). Arabinoxylanconsumption decreases postprandial serum glucose, seruminsulin and plasma total ghrelin response in subjects withimpaired glucose tolerance. European Journal of ClinicalNutrition, 61, 334-341. DOI: 10.1038/sj.ejcn.1602525.

  52. Genta, S., Cabrera, W., Habib, N., Pons, J., Carillo, I. M., Grau,A. & Sánchez, S. (2009). Yacon syrup: beneficial effects onobesity and insulin resistance in humans. Clinical Nutrition,28, 182-187. DOI: 10.1016/j.clnu.2009.01.013.

  53. Giacco, R., Clemente, G., Luongo, D., Lasorella, G., Fiume,I., Brouns, F., Bornet, F., Patti, L., Cipriano, P., Rivellese,A. A. & Riccardi, G. (2004). Effects of short-chain fructooligosaccharideson glucose and lipid metabolism in mildhypercholesterolaemic individuals. Clinical Nutrition, 23,331-340. DOI: 10.1016/j.clnu.2003.07.010.

  54. Glenn, R. G., Karen, P. S., Robert, A., Rastall, K. M., Tuohy,A. H., Alix, D. F., Melanie, G., Eileen, F. M., Delphine, S.,Gunnar, L., Sandra, M., Nathalie, D., Yehuda, R., Gunhild,K., Robin D., Irene, L. W., Carey, W. & Randal, B. (2010).Dietary prebiotics: current status and new definition. FoodScience and Technology Bulletin: Functional Foods, 7,1-19. DOI: 10.1616/1476-2137.15880.

  55. Grundy, S. M. (2016). Metabolic syndrome update. Trends inCardiovascular Medicine, 26, 364-373. DOI: 10.1016/j.tcm.2015.10.004.

  56. Han, K. H., Tsuchihira, H., Nakamura, Y., Shimada, K. I., Ohba,K., Aritsuka, T., Uchino, H., Kikuchi, H. & Fukushima,M. (2013). Inulin-type fructans with different degrees ofpolymerization improve lipid metabolism but not glucosemetabolism in rats fed a high-fat diet under energyrestriction. Digestive Diseases and Science, 58, 2177-2186.DOI: 10.1007/s10620-013-2631-z.

  57. Hansen, C. H. F., Frøkiær, H., Christensen, A. G., Bergström,A., Licht, T. R, Hansen, A. K. & Metzdorff, S. B. (2013).Dietary xylooligosaccharide downregulates IFN-γ and thelow-grade inflammatory cytokine IL-1β systemically inmice. Journal of Nutrition, 143, 533-540. DOI: 10.3945/jn.112.172361.

  58. He, M. & Shi, B. (2017). Gut microbiota as a potential target ofmetabolic syndrome: the role of probiotics and prebiotics.Cell & Bioscience, 7, 54. DOI: 10.1186/s13578-017-0183-1

  59. Heintz-Buschart, A. & Wilmes, P. (2018). Human GutMicrobiome: Function Matters. Trends in Microbiology,26, 563-574. DOI: 10.1016/j.tim.2017.11.002.

  60. Hume, M. P., Nicolucci, A. C. & Reimer, R. A. (2017). Prebioticsupplementation improves appetite control in children withoverweight and obesity: A randomized controlled trial.American Journal of Clinical Nutrition, 105, 790-799.DOI: 10.3945/ajcn.116.140947.

  61. INEGI, 2021. Características de las defunciones registradas enMéxico durante 2020. Comunicado de prensa núm. 61/21de enero de 2021.

  62. Johansson, M. E., Jakobsson, H. E., Holmén-Larsson, J.,Schütte, A., Ermund, A., Rodríguez-Piñeiro, A. M., Arike,L., Wising, C., Svensson, F., Bäckhed, F. & Hansson, G.C. (2015). Normalization of Host Intestinal Mucus LayersRequires Long-Term Microbial Colonization. Cell Host &Microbe, 18, 582-592. DOI: 10.1016/j.chom.2015.10.007

  63. Johansson, M. E., Phillipson, M., Petersson, J., Velcich, A.,Holm, L. & Hansson, G. C. (2008). The inner of the twoMuc2 mucin-dependent mucus layers in colon is devoid ofbacteria. Proceedings of the National Academy of Sciencesof the United States of America, 105, 15064-15069. DOI:10.1073/pnas.0803124105.

  64. Kaliannan, K., Wang, B., Li, X. Y., Kim, K. J. & Kang, J.X. (2015). A host-microbiome interaction mediates theopposing effects of omega-6 and omega-3 fatty acids onmetabolic endotoxemia. Scientific Reports, 5, 11276. DOI:10.1038/srep11276.

  65. Kastl, A. J., Jr, Terry, N. A., Wu, G. D. & Albenberg, L. G.(2020). The structure and function of the human smallintestinal microbiota: current understanding and futuredirections. Cellular and Molecular Gastroenterology andHepatology, 9, 33-45. DOI: 10.1016/j.jcmgh.2019.07.006.

  66. Kaur, J. (2014). A comprehensive review on metabolicsyndrome. Cardiology Research and Practice, 2014, 21.DOI: 10.1155/2014/943162.

  67. Kellow, N. J., Coughlan, M. T. & Reid, C. M. (2014). Metabolicbenefits of dietary prebiotics in human subjects: asystematic review of randomised controlled trials. BrithishJournal of Nutrition, 111, 1147-1161. DOI: 10.1017/S0007114513003607.

  68. Kim, M. & Shin, H. K. (1998). The water-soluble extract ofchicory influences serum and liver lipid concentrations,cecal short-chain fatty acid concentrations and fecal lipidexcretion in rats. Journal of Nutrition, 128, 1731-1736.DOI: 10.1093/jn/128.10.1731.

  69. Kok, N., Roberfroid, M., Robert, A. & Delzenne, N. (1996).Involvement of lipogenesis in the lower VLDL secretioninduced by oligofructose in rats. British Journal of Nutrition,76, 881-890. DOI: 10.1079/bjn19960094.

  70. Kok, N. N., Taper, H. S. & Delzenne, N. M (1998). Oligofructosemodulates lipid metabolism alterations induced by a fatrichdiet in rats. Journal of Applied Toxicology, 18, 47-53.DOI: 10.1038/oby.2005.117.

  71. Krumbeck, J. A., Maldonado-Gomez, M. X., Ramer-Tait, A.E. & Hutkins, R. W. (2016). Prebiotics and symbiotics:dietary strategies for improving gut health. CurrentOpinion in Gastroenterology, 32, 110-119. DOI: 10.1097/MOG.0000000000000249.

  72. Kuete, V. (2017). Chapter 12 in Medicinal Spices and Vegetablesfrom Africa. Therapeutic Potential Against Metabolic,Inflammatory, Infectious and Systemic Diseases. E.D. MollyMcLaughlin. African medicinal spices and vegetables andtheir potential in the management of metabolic syndrome(315-327) Cambridge, Massachusetts, Estados Unidos A.P. Academic Press (Elsevier). DOI: 10.1016/B978-0-12-809286-6.00012-1.

  73. Lam, K. L. & Chi, K. C. P. (2013). Non-digestible long chain betaglucansas novel prebiotics. Bioactive Carbohydrates andDietary Fibre, 2, 45-64. DOI: 10.1016/j.bcdf.2013.09.001.

  74. Lecerf, J. M., Depeint, F., Clerc, E., Dugenet, Y., Niamba, C. N.,Rhazi, L, Cayzeele, A., Abdelnour, G., Jaruga, A., Younes,H., Jacobs, H., Lambrey, G., Abdelnour, A. M. & Pouillart,P. R. (2012). Xylo- oligosaccharide (XOS) in combinationwith inulin modulates both the intestinal environment andimmune status in healthy subjects, while XOS alone onlyshows prebiotic properties. British Journal of Nutrition,108, 1847-1858. DOI: 10.1017/S0007114511007252.

  75. Li, Q., Zhang, Q., Wang, M., Zhao, S., Xu, G. & Li, J. (2008).ω-3 polyunsaturated fatty acids prevent disruption ofepithelial barrier function induced by proinflammatorycytokines. Molecular Immunology, 45,1356-1365. DOI:10.1016/j.molimm.2007.09.003.

  76. Lin, L. & Zhang, J. (2017). Role of intestinal microbiota andmetabolites on gut homeostasis and human diseases.BMCImmunology, 18, 2. DOI: 10.1186/s12865-016-0187-3.

  77. Lin, R., Liu, W., Piao, M. & Zhu, H. (2017). A review of therelationship between the gut microbiota and amino acidmetabolism. Amino Acids, 49, 2083-2090. DOI: 10.1007/s00726-017-2493-3.

  78. Louis, P., Flint, H. J. & Michel, C. (2016). How to manipulatethe microbiota: prebiotics. Advances in ExperimentalMedicine and Biology, 902, 119-42. DOI: 10.1007/978-3-319-31248-4_9.

  79. Ma, N., Tian, Y., Wu, Y. & Ma, X. (2017). Contributions of theinteraction between dietary protein and gut microbiota tointestinal health. Current Protein & Peptide Science, 18,795-808. DOI: 10.2174/1389203718666170216153505.

  80. Marhl, M., Grubelnik, V., Magdič, M. & Markovič, R. (2020).Diabetes and metabolic syndrome as risk factors forCOVID-19. Diabetes & Metabolic Syndrome,14, 671-677.DOI: 10.1016/j.dsx.2020.05.013.

  81. Marín, M. M. C., Abecia, L., Hernández, H. O., Sanz, M. L.,Montilla, A., Olano, A., Rubio, L. A., Moreno, F. J. &Clemente, A. (2013). Galacto-oligosaccharides derivedfrom lactulose exert a selective stimulation on the growth ofBifidobacterium animalis in the large intestine of growingrats. Journal of Agricultural and Food Chemistry, 61,7560-7. DOI: 10.1021/jf402218z.

  82. Markowiak, P. & Śliżewska, K. (2017). Effects of probiotics,prebiotics, and synbiotics on human health. Nutrients, 9,1021. DOI: 10.3390/nu9091021.

  83. Márquez, A., Camacho, R., Arriaga, A., Padilla, C., Reinhart,K., Blasco, L. & González, A. (2013). Effects of Agavetequilana fructans with different degree of polymerizationprofiles on the body weight, blood lipids and count offecal Lactobacilli/ Bifidobacteria in obese mice. Food andFunction, 4, 1237-1244. DOI: 10.1039/c3fo60083a.

  84. Márquez, A., Camacho, R., Gutiérrez, M., Padilla, C., González,A., Gálvez, G., Díaz, M. & Ortuño, S. (2016). Fructans fromAgave tequilana with a lower degree of polymerizationprevent weight gain, hyperglycemia and liver steatosis inhigh-fat diet-induced obese mice. Plant Foods for HumanNutrition, 71, 416-421. DOI: 10.1007/s11130-016-0578-x.

  85. Michel, A. R. J., Izeta, G. A. C. & Torres, A. G. (2017). Thehuman intestinal microbiota and microbiome. (Between thekeys of the kingdom and a new Pandora’s Box). Revistade Sanidad Militar Mexicana, 71, 443-448.

  86. Mitev, K. & Taleski, V. (2019). Association between the gutmicrobiota and obesity. Macedonian Journal Of MedicalSciences, 7(12), 2050. DOI: 10.3889/oamjms.2019.586.

  87. Murugesan, S., Ulloa-Martínez, M., Martínez-Rojano, H.,Galván-Rodríguez, F. M., Miranda-Brito, C., Romano,M. C., Piña-Escobedo, A., Pizano-Zárate, M. L., Hoyo-Vadillo, C. & García-Mena, J. (2015). Study of thediversity and short-chain fatty acids production by thebacterial community in overweight and obese Mexicanchildren. European Journal of Clinical Microbiologyand Infectious Diseases, 34, 1337-1346. DOI: 10.1007/s10096-015-2355-4.

  88. Neis, E., Dejong, C. & Rensen, S. (2015). The role of microbialamino acid metabolism in host metabolism. Nutrients, 7,2930-2946. DOI: 10.3390/nu7042930.93. Neyrinck, A. M., Possemiers, S., Druart, C., Van de Wiele,T., De Backer, F., Cani, P. D., Larondelle, Y. & Delzenne,N. M. (2011). Prebiotic effects of wheat arabinoxylanrelated to the increase in bifidobacteria, Roseburia andBacteroides/Prevotella in diet-induced obese mice. PLoSOne, 6, e20944. DOI: 10.1371/journal.pone.0020944.

  89. Nguyen, T. T. B., Jin, Y. Y., Chung, H. J. & Hong, S. T. (2017).Pharmabiotics as an emerging medication for metabolicsyndrome and its related diseases. Molecules, 22, 1795.DOI: 10.3390/molecules22101795.

  90. Nicolucci, A. C., Hume, M. P., Martínez, I., Mayengbam, S.,Walter, J. & Reimer, R. A. (2017). Prebiotics reduce bodyfat and alter intestinal microbiota in children who areoverweight or with obesity. Gastroenterology, 153, 711-722. DOI: 10.1053/j.gastro.2017.05.055.

  91. Nihei, N., Okamoto, H., Furune, T., Ikuta, N., Sasaki, K.,Rimbach, G., Yoshikawa, Y. & Terao, K. (2018). Dietaryα-cyclodextrin modifies gut microbiota and reduces fataccumulation in high-fat-diet-fed obese mice. Biofactors,44, 336–347. DOI: 10.1002/biof.1429.97. Org, E., Blum, Y., Kasela, S., Mehrabian, M., Kuusisto, J.,Kangas, A. J., Soininen, P., Wang, Z., Ala-Korpela, M.,Hazen S.L., Laakso, M. & Lusis, A. J. (2017). Relationshipsbetween gut microbiota, plasma metabolites, and metabolicsyndrome traits in the METSIM cohort. Genome Biology,18, 70.

  92. Parnell, J. A. & Reimer, R. A. (2009). Weight loss duringoligofructose supplementation is associated with decreasedghrelin and increased peptide YY in overweight and obeseadults. American Journal of Clinical Nutrition, 89, 1751-1759. DOI: 10.3945/ajcn.2009.27465.

  93. Parnell, J. A. & Reimer, R. A. (2012). Prebiotic fibresdose-dependently increase satiety hormones and alterBacteroidetes and Firmicutes in lean and obese JCR: LAcprats. British Journal of Nutrition, 107, 601-613. DOI:10.1017/S0007114511003163.

  94. Pereira, F. C. & Berry, D. (2017). Microbial nutrient niches inthe gut. Environmental Microbiology, 19(4), 1366-1378.DOI: 10.1111/1462-2920.13659.

  95. Pickard, J. M., Zeng, M. Y., Caruso, R. & Núñez, G. (2017).Gut microbiota: Role in pathogen colonization, immuneresponses, and inflammatory disease. ImmunologicalReviews, 279(1), 70–89. DOI: 10.1111/imr.12567.

  96. Prossomariti, A., Scaioli, E., Piazzi, G., Fazio, C., Bellanova,M. & Biagi, E. (2017). Short-term treatment witheicosapentaenoic acid improves inflammation and affectscolonic differentiation markers and microbiota in patientswith ulcerative colitis. Scientific Reports, 7(1), 7458. DOI:10.1038/s41598-017-07992-1.

  97. Rajilić-Stojanović, M. & De Vos, W. M. (2014). The first 1000cultured species of the human gastrointestinal microbiota.FEMS Microbiology Reviews, 38(5), 996-1047. DOI:10.1111/1574-6976.12075.

  98. Rault-Nania, M. H., Gueux, E., Demougeot, C., Demigne,C., Rock, E., & Mazur, A. (2006). Inulin attenuatesatherosclerosis in apolipoprotein E-deficient mice. BritishJournal of Nutrition, 96(5), 840–844. DOI: 10.1017/bjn20061913.

  99. Reimer, R. A. & Russell, J. C. (2008). Glucose Tolerance, Lipids,and GLP-1 Secretion in JCR:LA-cp Rats Fed a High ProteinFiber Diet. Obesity, 16, 40–46. DOI: 10.1038/oby.2007.16.

  100. Reimer, R. A., Willis, H. J., Tunnicliffe, J. M., Park, H., Madsen,K. L. & Soto-Vaca, A. (2017). Inulin-type fructans and wheyprotein both modulate appetite but only fructans alter gutmicrobiota in adults with overweight/obesity: A randomizedcontrolled trial. Molecular Nutrition Food Research, 61,1700484. DOI: 10.1002/mnfr.201700484.

  101. Reis, S. A., Conceição, L. L., Diniz, R., Damiana, D., Manoela,M. S. & Peluzio, M. C. (2015). Mechanisms used byinulin-type fructans to improve the lipid profile. NutriciónHospitalaria, 31(2), 528-534. DOI:10.3305/nh.2015.31.2.7706.

  102. Rescigno, M. (2014). Intestinal microbiota and its effects on theimmune system. Cellular Microbiology, 16(7),1004-1013.DOI: 10.1111/cmi.12301.

  103. Respondeck, F., Gerard, P., Bossis, M., Boschat, L., Bruneau, A.,Rabot, S., Wagner, A. & Martin, J. C. (2013). Short-chainFructo-oligosaccharides modulate intestinal microbiotaand metabolic parameters of humainzed gnotobiotic dietinduced obesity mice. PLoS One, 8, e71026. DOI: 10.1371/journal.pone.0071026.

  104. Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F.,Miggiano, G. A. D., Gasbarrini, A. & Mele, M. C. (2019).What is the Healthy Gut Microbiota Composition? AChanging Ecosystem across Age, Environment, Diet,and Diseases. Microorganisms, 7(1), 14. DOI: 10.3390/microorganisms7010014.

  105. Rochlani, Y., Pothineni, N. V., Kovelamudi, S. & Mehta,J. L. (2017). Metabolic syndrome: pathophysiology,management, and modulation by natural compounds.Therapeutic Advances in Cardiovascular Disease, 11(8),215-225. DOI: 10.1177/1753944717711379.

  106. Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J.,Thiele, I. & Tuohy, K. (2018). Gut microbiota functions:metabolism of nutrients and other food components.European Journal of Nutrition, 57(1), 1-24. DOI: 10.1007/s00394-017-1445-8.

  107. Russo, F., Linsalata, M., Clemente, C., Chiloiro, M., Orlando,A., Marconi, E., Chimienti, G. & Riezzo, G. (2012). Inulinenrichedpasta improves intestinal permeability and modifiesthe circulating levels of zonulin and glucagon-like peptide2 in healthy young volunteers. Journal Nutrition Research,32, 940–946. DOI: 10.1016/j.nutres.2012.09.010.

  108. Russo, F., Riezzo, G., Chiloiro, M., De Michele, G.,Chimienti, G., Marconi, E., D’Attoma, B., Linsalata,M. & Clemente, C. (2010). Metabolic effects of a dietwith inulin-enriched pasta in healthy young volunteers.Current Pharmaceutical Design, 16(7), 825–831.DOI:10.2174/138161210790883570.

  109. Saklayen, M. G. (2018). The Global Epidemic of the MetabolicSyndrome. Current Hypertension Reports, 26, 20(2), 12.DOI: 10.1007/s11906-018-0812-z.

  110. Santoru, M. L., Piras, C., Murgia, A., Palmas, V., Camboni,T. & Liggi, S. (2017). Cross sectional evaluation of thegut-microbiome metabolome axis in an Italian cohort ofIBD patients. Scientific Reports, 7(1), 9523. DOI: 10.1038/s41598-017-10034-5. Erratum in: Scientific Reports, 2018Mar 19, 8(1), 4993. DOI: 10.1038/s41598-018-23330-5.

  111. Saville, B. A. & Saville, S. (2018) Xylooligosaccharides andarabinoxylanoligosaccharides and their application asprebiotics. Applied Food Biotechnology, 5, 121–130. https://doi.org/10.22037/afb.v5i3.20212.

  112. Schiffrin, E. J., Thomas, D. R., Kumar, V. B., Brown, C.,Hager, C., Van’t Hof, M. A., Morley, J. E. & Guigoz,Y. (2007). Systemic inflammatory markers in olderpersons: the effect of oral nutritional supplementationwith prebiotics. The Journal of Nutrition, Health &Aging, 11(6), 475–479.

  113. Shamah-Levy T, Vielma-Orozco E, Heredia-Hernández O,Romero-Martínez M, Mojica-Cuevas J, Cuevas-Nasu L,Santaella-Castell, J. A & Rivera-Dommarco J. (2020).Encuesta Nacional de Salud y Nutrición 2018-19:Resultados Nacionales. Cuernavaca, México: InstitutoNacional de Salud Pública, 2020.

  114. Schloissnig, S., Arumugam, M., Sunagawa, S., Mitreva, M.,Tap, J., Zhu, A., Waller, A., Mende, D. R., Kultima, J. R.,Martin, J., Kota, K., Sunyaev, S. R., Weinstock, G. M. &Bork, P. (2013). Genomic variation landscape of the humangut microbiome. Nature, 493(7430), 45–50. https://doi.org/10.1038/nature11711.

  115. Schwiertz, A. & Rusch, V. (2016). A Short Definition of Terms.En Schwiertz A. (Ed). Microbiota of the Human Body.Advances in Experimental Medicine and Biology, Vol.902 (pp1-3). Springer, Cham. https://doi.org/10.1007/978-3-319-31248-4_1

  116. Sekirov, I., Russell, S. L. & Antunes, L. C. M. (2010). Gutmicrobiota in health and disease. Physiological Reviews,90, 859–904. https://doi.org/10.1152/physrev.00045.2009

  117. Sender, R., Fuchs, S. & Milo, R. (2016). Are we really vastlyoutnumbered? Revisiting the ratio of bacterial to hostcells in humans. Cell, 164(3), 337-340. DOI: 10.1016/j.cell.2016.01.013.

  118. Sherling, D. H., Perumareddi, P. & Hennekens, C. H. (2017).Metabolic Syndrome: Clinical and Policy Implicationsof the New Silent Killer. Journal of CardiovascularPharmacology and Therapeutics, 22 (4), 365-367. DOI:10.1177/1074248416686187

  119. Shetty, S. A., Hugenholtz, F., Lahti, L., Smidt, H. & de Vos,W. M. (2017). Intestinal microbiome landscaping: insightin community assemblage and implications for microbialmodulation strategies. FEMS Microbiology Reviews, 41(2),182-199. DOI: 10.1093/femsre/fuw045.

  120. Singh, A. K., Gillies, C. L., Singh, R., Singh, A., Chudasama,Y., Coles, B. & Khunti, K. (2020). Prevalence of comorbiditiesand their association with mortality in patientswith COVID-19: a systematic review and meta-analysis.Diabetes, Obesity and Metabolism, 22(10),1915-1924.DOI: 10.1111/dom.14124

  121. Soderholm, A. T. & Pedicord, V. A. (2019). Intestinal epithelialcells: at the interface of the microbiota and mucosalimmunity. Immunology, 158(4), 267-280. DOI: 10.1111/imm.13117.

  122. Sonnenburg, J. L. & Backhed, F. (2016). Diet microbiotainteractions as moderators of human metabolism. Nature,535(7610), 56-64. https://doi.org/10.1038/nature18846

  123. Sugatani, J., Wada, T. & Osabe, M. (2006) Dietary inulinalleviates hepatic steatosis and xenobiotics-inducedliver injury in rats fed a high-fat and high-sucrose diet:association with the suppression of hepatic cytochromeP450 and hepatocyte nuclear factor 4 alpha expression.Drug Metabolism and Disposition, 34, 1677 – 1687. DOI:10.1124/dmd.106.010645.

  124. Thursby, E. & Juge, N. (2017). Introduction to the human gutmicrobiota. Biochemical Journal, 474(11), 1823-1836.DOI: 10.1042/BCJ20160510.

  125. Tovar, A. R., Caamano, M. del C., García-Padilla, S., Duarte,M. A. & Rosado, J. L. (2012). The inclusion of a partialmeal replacement with or without inulin to a calorierestricted diet contributes to reach rec- ommended intakesof micronutrients and decrease plasma triglycerides:a randomized clinical trial in obese Mexican women.Nutrition Journal, 11, 44. https://doi.org/10.1186/1475-2891-11-44.

  126. Ussar, S., Griffin, N. W., Bezy, O., Fujisaka, S., Vienberg,S., Softic, S., Deng, L., Bry, L., Gordon, J. I. & Kahn,C. R. (2015). Interactions between Gut Microbiota, HostGenetics and Diet Modulate the Predisposition to Obesityand Metabolic Syndrome. Cell Metabolism, 22, 516–530.DOI: 10.1016/j.cmet.2015.07.007.

  127. Vaishnava, S., Yamamoto, M., Severson, K. M., Ruhn, K. A.,Yu, X., Koren, O., Ley, R., Wakeland, E. K. & Hooper, L. V.(2011). The antibacterial lectin RegIIIgamma promotes thespatial segregation of microbiota and host in the intestine.Science, 334, 255-258. DOI: 10.1126/science.1209791.

  128. Van de W.T., Boon, N., Possemiers, S., Jacobs, H. & Verstraete,W. (2007). Inulin-type fructans of longer degree ofpolymerization exert more pronounced in vitro prebioticeffects. Journal of Applied Microbiology, 102(2), 452–460.https://doi.org/10.1111/j.1365-2672.2006.03084.x.

  129. Varzakas, T., Panagiotis, K., Dimitra, D., Chryssoula, S., George,Z. & Charalampos, P. (2018). Innovative and fortifiedfood: Probiotics, prebiotics, GMOs, and superfood. EnAli, E., Nizar, N. N. A. (Ed.) Preparation and Processingof Religious and Cultural Foods, (pp. 67-129) WoodheadPublishing. DOI:10.1016/B978-0-08-101892-7.00006-7.

  130. Verhoef, S. P., Meyer, D. & Westerterp, K. R. (2011). Effectsof oligofructose on appetite profile, glucagon-likepeptide1 and peptide YY3-36 concentrations and energy intake.British Journal of Nutrition, 106, 1757–1762. DOI: 10.1017/S0007114511002194.

  131. Villmones, H. C., Halland, A., Stenstad, T., Ulvestad, E.,Weedon-Fekjær, H. & Kommedal, Ø. (2021). The cultivablemicrobiota of the human distal ileum. Clinical Microbiologyand Infection, 27(6), 912.e7-912.e13. DOI: 10.1016/j.cmi.2020.08.021. Epub 2020 Aug 21. PMID: 32835795.

  132. Virgin, H. W. (2014). The virome in mammalian physiology anddisease. Cell, 157(1), 133-150. https://doi.org/10.1016/j.cell.2014.02.032.

  133. Vulevic, J., Juric, A., Tzortzis, G. & Gibson, G. R. (2013). Amixture of trans-galactooligosaccharides reduces markersof metabolic syndrome and modulates the fecal microbiotaand immune function of overweight adults. The Journal ofNutrition, 143(3), 324-31. DOI: 10.3945/jn.112.166132.

  134. Weiss, G. A. & Hennet, T. (2017). Mechanisms and consequencesof intestinal dysbiosis. Cellular and Molecular LifeSciencies, 74(16), 2959-2977. DOI: 10.1007/s00018-017-2509-x.

  135. Whelan, K. (2013). Mechanisms and effectiveness of prebioticsin modifying the gastrointestinal microbiota for themanagement of digestive disorders. Proceedings of theNutrition Society, 72, 288–298. https://doi.org/10.1017/S0029665113001262.

  136. Whelan, K., Efthymiou, L. & Judd, P. A. (2006). Appetiteduring consumption of enteral formula as a sole sourceof nutrition: the effect of supplementing pea-fibre andfructo- oligosaccharides. British Journal of Nutrition, 96,350 – 356. DOI: 10.1079/bjn20061791.

  137. Willson, K. & Situ, C. (2017). Systematic Review on Effects ofDiet on Gut Microbiota in Relation to Metabolic Syndromes.Journal of Clinical Nutrition and Metabolism, 1(2), 1-12.

  138. Yang, J., Summanen, P. H., Henning, S. M., Hsu, M., Lam, H.,Huang, J., Tseng, CH., Dowd, S. E., Finegold, S. M., Heber,D. & Li, Z. (2015). Xylooligosaccharide supplementationalters gut bacteria in both healthy and prediabetic adults: apilot study. Frontier in Physiology, 6, 216. DOI: 10.3389/fphys.2015.00216.

  139. Yang, Y., Zhou, L., Gu, Y., Zhang, Y., Tang, J., Li, F., Shang,W., Jiang, B., Yue, W. & Chen, M. (2007). Dietarychickpeas reverse visceral adiposity, dyslipidaemia andinsulin resistance in rats induced by a chronic high-fat diet.British Journal of Nutrition, 98, 720–726. DOI: 10.1017/

  140. S0007114507750870.Yoo, J. Y. & Kim, S. S. (2016). Probiotics and Prebiotics: PresentStatus and Future Perspectives on Metabolic Disorders.Nutrients, 8(3), 173. DOI: 10.3390/nu8030173.

  141. Zand, H., Morshedzadeh, N. & Naghashian, F. (2017). Signalingpathways linking inflammation to insulin resistance.Diabetes & Metabolic Syndrome: Clinical Research& Reviews, 11(S1), S307–9. https://doi.org/10.1016/j.dsx.2017.03.006.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2022;25