medigraphic.com
SPANISH

Medicina Crítica

  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • Policies
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2023, Number 8

<< Back Next >>

Med Crit 2023; 37 (8)

A more accessible tool... blood biomarkers in the assessment of malnutrition in critically ill patients

Ortega DDV, Guerrero THE, Gómez GN, Acoltzi PW, González CPL
Full text How to cite this article 10.35366/115225

DOI

DOI: 10.35366/115225
URL: https://dx.doi.org/10.35366/115225

Language: Spanish
References: 27
Page: 672-685
PDF size: 406.79 Kb.


Key words:

sarcopenia, malnutrition, muscle ultrasound, Heckmatt, albumin/fibrinogen.

ABSTRACT

Introduction: the prevalence of malnutrition in ICU is 30-70%, nutritional assessment represents a determinant in the prognostic factor of the critically ill patient, with direct impact on mortality, length of hospital stay, days of invasive mechanical ventilation and frequency of infections. In addition to muscle ultrasound, some biomarkers have proven to be useful in nutritional assessment, among which fibrinogen levels seem to be the most promising for this purpose, as well as other blood biomarkers. However, their usefulness is not entirely clear in the assessment of critically ill patients, so having an assessment of the nutritional process evaluated by ultrasound and biomarkers represents an accessible tool in most intensive care units. Material and methods: observational, analytical and longitudinal study was conducted in a third level Intensive Care Unit (ICU), from May 1, 2022 to August 15, 2023, with a total sample of 70 patients, including: patients over 18 years of age, stay in ICU longer than 72 hours, with organ failure by SOFA and APACHE II; the following were excluded: patients with parenteral nutrition, over 65 years of age; amputation of lower extremities. A sonographic assessment was performed and a venous blood sample was taken on admission and after 72 hours. Among the biomarkers included, lymphocyte, haematocrit, albumin, fibrinogen, C-reactive protein (CRP), triglycerides and cholesterol values were determined; weight, height, body mass index and body surface area were measured; ultrasound measurements were performed using the Heckmatt scale, assigning graduation, and measurement of the anteroposterior and latero-lateral diameter of the rectus femoris muscle. Results: the median age recorded was 41.5 RIC 28, 28 males (40%) and 42 females (60%). On admission 10 patients (14.28%) presented sarcopenia; 14 patients presented sarcopenia; The Age presented a statistically significant correlation with the presence and development of sarcopenia-malnutrition (Pearson correlation), assessed at admission and at 3 days of ICU stay, both for the Heckmatt scale and for the measurement of rectus femoris muscle thickness in the anterior-posterior (USG musc RF-AP) and lateral-lateral (USG musc RF-LL) portion. In the assessment of the Heckmatt scale at day 3 of ICU stay, a negative correlation was obtained with the measurement of USG musc RF-LL (r -0.313, p 0.008) and positive correlation with the albumin/fibrinogen ratio (r 0.246, p 0.04). From the ROC analysis the comparison of Heckmatt on admission the biomarker that best AUC the Heckmatt scale at day 3 with the rest of the variables on the same day, CRP was the most representative (AUC 0.753 p < 0.001). From the result of the ROC analysis of the USG musc RF-AP on day 3, the albumin/fibrinogen ratio obtained an AUC of 0.553. The cut-off points found as predictors of sarcopenia-malnutrition were: for USG musc RF-LL 1.56 (sensitivity 84%, specificity 82%), for albumin/fibrinogen ratio it was 3.8 (sensitivity 84.6%, specificity 70.2%) and for CRP 6.25 (sensitivity 92.3%, specificity 77.2%). From the result of the multiple linear regression model by forced entry taking the variables from day 3 of stay, it was shown that there is no bias between sarcopenia-nutrition and the other variables included (biomarkers and Us. RF), demonstrating association in the main outcome (sarcopenia), contributing together up to 31.9%, being statistically significant determined by the comparison between variables of the ANOVA analysis with a p value of 0.03. Conclusions: bedside nutritional assessment by ultrasound is useful, as is assessment by biomarkers of which albumin fibrinogen ratio and CRP represented better results. Measurement of rectus femoris in the latero lateral portion, albumin/fibrinogen ratio and CRP levels are reliable predictors of sarcopenia-nutrition in critically ill patients.


REFERENCES

  1. Narayan SK, Gudivada KK. Assessment of nutritional status in the critically ill. Indian J Crit Care Med. 2020;24(S4):S152-156. Available in: http://dx.doi.org/10.5005/jp-journals-10071-23617

  2. Dijkink S, Meier K, Krijnen P, Yeh DD, Velmahos GC, Arbous MS, et al. The malnutrition in polytrauma patients (MaPP) study: research protocol. Nutr Health. 2019;25(4):291–301. Available in: http://dx.doi.org/10.1177/0260106019868884

  3. Nagae M, Umegaki H, Yoshiko A, Fujita K. Muscle ultrasound and its application to point-of-care ultrasonography: a narrative review. Ann Med. 2023;55(1):190-197. Available in: http://dx.doi.org/10.1080/07853890.2022.2157871

  4. Padron-Monedero A, Rodríguez-Artalejo F, Lopez-Garcia E. Dietary micronutrients intake and plasma fibrinogen levels in the general adult population. Sci Rep. 2021;11(1):3843. Available in: http://dx.doi.org/10.1038/s41598-021-83217-w

  5. Tognolo L, Coraci D, Farì G, Vallenari V, Masiero S. Validity of ultrasound rectus femoris quantitative assessment: A comparative study between linear and curved array transducers. Eur J Transl Myol. 2022;32(4):11040.Available in: http://dx.doi.org/10.4081/ejtm.2022.11040

  6. Hill A, Elke G, Weimann A. Nutrition in the intensive care unit: a narrative review. Nutrients. 2021;13(8):2851. Available in: http://dx.doi.org/10.3390/nu13082851

  7. Lew CCH, Yandell R, Fraser RJL, Chua AP, Chong MFF, Miller M. Association between malnutrition and clinical outcomes in the intensive care unit: a systematic review. JPEN J Parenter Enteral Nutr. 2017;41(5):744-758. Available in: http://dx.doi.org/10.1177/0148607115625638

  8. McCarthy MS, Martindale RG. Immunonutrition in critical illness: What is the role? Nutr Clin Pract. 2018;33(3):348-358. Available in: http://dx.doi.org/10.1002/ncp.10102

  9. Kaysen GA, Kumar V. Inflammation in ESRD: causes and potential consequences. J Ren Nutr. 2003;13(2):158-160. Available in: http://dx.doi.org/10.1053/jren.2003.50021

  10. De Souza VA, Oliveira D, Cupolilo EN, Miranda CS, Colugnati FAB, Mansur HN, et al. Rectus femoris muscle mass evaluation by ultrasound: facilitating sarcopenia diagnosis in pre-dialysis chronic kidney disease stages. Clinics (Sao Paulo). 2018;73(e392):e392. Available in: http://dx.doi.org/10.6061/clinics/2018/e392

  11. Moreira E, Burghi G, Manzanares W. Metabolismo y terapia nutricional en el paciente quemado crítico: una revisión actualizada. Med Intensiva. 2018;42(5):306-316. Disponible en: http://dx.doi.org/10.1016/j.medin.2017.07.007

  12. Preiser J-C, Ichai C, Orban J-C, Groeneveld ABJ. Metabolic response to the stress of critical illness. Br J Anaesth. 2014;113(6):945-954. Available in: http://dx.doi.org/10.1093/bja/aeu187

  13. Ramírez Medina S, Gutiérrez Vázquez IR, Domínguez Maza A, Barba Fuentes C. Respuesta metabólica al trauma. MEDICRIT. 2008;5(4):130-133. Disponible en: http://dx.doi.org/10.5413/mrmc.2008.54.109

  14. Singer P, Blaser AR, Berger MM, Alhazzani W, Calder PC, Casaer MP, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019;38(1):48-79. Available in: http://dx.doi.org/10.1016/j.clnu.2018.08.037

  15. Canales C, Elsayes A, Yeh DD, Belcher D, Nakayama A, McCarthy CM, et al. Nutrition risk in critically ill versus the nutritional risk screening 2002: Are they comparable for assessing risk of malnutrition in critically ill patients? JPEN J Parenter Enteral Nutr. 2019;43(1):81-87. Available in: http://dx.doi.org/10.1002/jpen.1181

  16. McClave SA, Taylor BE, Martindale RG, Warren MM, Johnson DR, Braunschweig C, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of critical care medicine (SCCM) and American society for parenteral and enteral nutrition (A.s.p.e.n.). JPEN J Parenter Enteral Nutr. 2016;40(2):159-211. Available in: http://dx.doi.org/10.1177/0148607115621863

  17. Kondrup J. Nutritional-risk scoring systems in the intensive care unit. Curr Opin Clin Nutr Metab Care. 2014;17(2):177-182. Available in: http://dx.doi.org/10.1097/mco.0000000000000041

  18. Zhang Z, Pereira S, Luo M, Matheson E. Evaluation of blood biomarkers associated with risk of malnutrition in older adults: a systematic review and meta-analysis. Nutrients. 2017;9(8):829. Available in: http://dx.doi.org/10.3390/nu9080829

  19. Gomez-Gonzalez MN. Correlation between the sonographic measurement of the quadriceps muscle with the prealbumin in the nutrition assessment of critically ill patient. [Tesis de maestría], León, Guanajuato. Universidad de Guanajuato, 2018.

  20. Merker M, Felder M, Gueissaz L, Bolliger R, Tribolet P, Kägi-Braun N, et al. Association of baseline inflammation with effectiveness of nutritional support among patients with disease-related malnutrition: a secondary analysis of a randomized clinical trial. JAMA Netw Open. 2020;3(3):e200663. Available in: http://dx.doi.org/10.1001/jamanetworkopen.2020.0663

  21. Berger MM, Reintam-Blaser A, Calder PC, Casaer M, Hiesmayr MJ, Mayer K, et al. Monitoring nutrition in the ICU. Clin Nutr. 2019;38(2):584-593. Available in: http://dx.doi.org/10.1016/j.clnu.2018.07.009

  22. Nijholt W, Scafoglieri A, Jager-Wittenaar H, Hobbelen JSM, van der Schans CP. The reliability and validity of ultrasound to quantify muscles in older adults: a systematic review: muscle ultrasound in older adults. J Cachexia Sarcopenia Muscle. 2017;8(5):702-712. Available in: http://dx.doi.org/10.1002/jcsm.12210

  23. Hernández PAE, Gómez GMN, Soriano OR, Hernández MA, González CPL. Relación entre la medición sonográfica de los músculos recto femoral y vasto intermedio y los parámetros bioquímicos convencionales para valorar el estado nutricional en la unidad de cuidados intensivos. Med Crit. 2018;32(6):351-358. Disponible en: http://dx.doi.org/10.35366/ti186d

  24. Looijaard WGPM, Molinger J, Weijs PJM. Measuring and monitoring lean body mass in critical illness. Curr Opin Crit Care. 2018;24(4):241-247. Available in: http://dx.doi.org/10.1097/mcc.0000000000000511

  25. Moreta MC, Fleet A, Reebye R, McKernan G, Berger M, Farag J, et al. Reliability and validity of the modified heckmatt scale in evaluating muscle changes with ultrasound in spasticity. Arch Rehabil Res Clin Transl. 2020;2(4):100071. Available in: http://dx.doi.org/10.1016/j.arrct.2020.100071

  26. Galindo Martín CA, Monares Zepeda E, Lescas Méndez OA. Bedside ultrasound measurement of rectus femoris: A tutorial for the nutrition support clinician. J Nutr Metab. 2017;2017:1-5. Available in: http://dx.doi.org/10.1155/2017/2767232

  27. Rustani K, Kundisova L, Capecchi PL, Nante N, Bicchi M. Ultrasound measurement of rectus femoris muscle thickness as a quick screening test for sarcopenia assessment. Arch Gerontol Geriatr. 2019;83:151-154. Available in: http://dx.doi.org/10.1016/j.archger.2019.03.021




Figure 1
Figure 2
Figure 3
Table 1
Table 2
Table 3
Table 4

2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Med Crit. 2023;37