medigraphic.com
SPANISH

Neurología, Neurocirugía y Psiquiatría

ISSN 0028-3851 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2023, Number 3

<< Back Next >>

Rev Neurol Neurocir Psiquiat 2023; 51 (3)

Copolymer-1 as potential therapy for mild cognitive impairment

Fuentes-Fernández-Cueto M, Ibarra A
Full text How to cite this article 10.35366/115406

DOI

DOI: 10.35366/115406
URL: https://dx.doi.org/10.35366/115406

Language: Spanish
References: 49
Page: 144-150
PDF size: 168.01 Kb.


Key words:

glatiramer acetate, mild cognitive impairment, neuroinflammation, neurogenesis, copolymer-1.

ABSTRACT

Mild Cognitive Impairment (MCI) is an early stage of loss of cognitive ability that can precede dementia and Alzheimer's disease (AD). Neuroinflammation plays a major role in the pathogenesis of MCI. One of the treatments approved by the United States' Food and Drug Administration (FDA) for relapsing-remitting multiple sclerosis is Copolymer-1 (Cop-1), also known as glatiramer acetate, a synthetic polypeptide of four amino acids. The therapeutic effect of Cop-1 is due to the fact that it promotes immunomodulation through a change in the phenotype of T lymphocytes from proinflammatory to anti-inflammatory and stimulates the production of brain-derived neurotrophic factor (BDNF), a neurotrophin involved in neurogenesis and generation of hippocampal long-term potentiation. BDNF levels are significantly decreased in aging patients with MCI, so Cop-1 immunization could promote synaptic plasticity and memory by increasing BDNF production in these patients.


REFERENCES

  1. Zhuang L, Yang Y, Gao J. Cognitive assessment tools for mild cognitive impairment screening. J Neurol. 2021; 268 (5): 1615-1622. Available in: https: //doi.org/10.1007/s00415-019-09506-7

  2. Cheng YW, Chen TF, Chiu MJ. From mild cognitive impairment to subjective cognitive decline: conceptual and methodological evolution. Neuropsychiatr Dis Treat. 2017; 13: 491-498 Available in: https: //doi.org/10.2147/NDT.S123428

  3. Li JQ, Tan L, Wang HF, Tan MS, Tan L, Xu W et al. Risk factors for predicting progression from mild cognitive impairment to Alzheimer's disease: a systematic review and meta-analysis of cohort studies. J Neurol Neurosurg Psychiatry. 2016; 87 (5): 476-484. Available in: https://doi.org/10.1136/jnnp-2014-310095

  4. Lissek V, Suchan B. Preventing dementia? Interventional approaches in mild cognitive impairment. Neurosci Biobehav Rev. 2021; 122: 143-164. Available in: https://doi.org/10.1016/j.neubiorev.2020.12.022

  5. Dunne RA, Aarsland DO, Brien JT, Ballard C, Banerjee S, Fox NC et al. Mild cognitive impairment: the Manchester consensus. Age Ageing. 2021; 50 (1): 72-80. Available in: https://doi.org/10.1093/ageing/afaa228

  6. Chen YX, Liang N, Li XL, Yang SH, Wang YP, Shi NN. Diagnosis and treatment for mild cognitive impairment: a systematic review of clinical practice guidelines and consensus statements. Front Neurol. 2021; 12: 719849. Available in: https://doi.org/10.3389/fneur.2021.719849

  7. Petersen RC. Clinical practice Mild cognitive impairment. N Engl J Med. 2011; 364 (23): 2227-2234. Available in: https://doi.org/10.1056/NEJMcp0910237

  8. Brynskikh A, Warren T, Zhu J, Kipnis J. Adaptive immunity affects learning behavior in mice. Brain Behav Immun. 2008; 22 (6): 861-869. Available in: https://doi.org/10.1016/j.bbi.2007.12.008

  9. Aharoni R. Immunomodulation neuroprotection and remyelination - the fundamental therapeutic effects of glatiramer acetate: a critical review. J Autoimmun. 2014; 54: 81-92. Available in: https://doi.org/10.1016/j.jaut.2014.05.005

  10. Nieto-Vera R, Kahuam-Lopez N, Meneses A, Cruz-Martinez Y, Anaya-Jimenez RM, Liy-Salmeron G et al. Copolymer-1 enhances cognitive performance in young adult rats. PLoS One. 2018; 13 (3): e0192885. Available in: https://doi.org/10.1371/journal.pone.0192885

  11. Mufson EJ, Binder L, Counts SE, DeKosky ST, de Toledo-Morrell L, Ginsberg SD et al. Mild cognitive impairment: pathology and mechanisms. Acta Neuropathol. 2012; 123 (1): 13-30. Available in: https://doi.org/10.1007/s00401-011-0884-1

  12. Zhang S, Smailagic N, Hyde C, Noel-Storr AH, Takwoingi Y, McShane R et al. (11)C-PIB-PET for the early diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI) Cochrane Database Syst Rev. 2014; 7: CD010386. Available in: https://doi.org/10.1002/14651858.CD010386.pub2

  13. Qian J, Wolters FJ, Beiser A, Haan M, Ikram MA, Karlawish J et al. APOE-related risk of mild cognitive impairment and dementia for prevention trials: an analysis of four cohorts. PLoS Med. 2017; 14 (3): e1002254. Available in: https://doi.org/10.1371/journal.pmed.1002254

  14. Kordower JH, Chu Y, Stebbins GT, DeKosky ST, Cochran EJ, Bennett D et al. Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann Neurol. 2001; 49 (2): 202-213. Available in: https://www.ncbi.nlm.nih.gov/pubmed/11220740

  15. Fiorini R, Luzzi S, Vignini A. Perspectives on mild cognitive impairment as a precursor of Alzheimer's disease. Neural Regen Res. 2020; 15 (11): 2039-2040. Available in: https://doi.org/10.4103/1673-5374.282256

  16. Barone E, Di Domenico F, Cenini G, Sultana R, Coccia R, Preziosi P et al. Oxidative and nitrosative modifications of biliverdin reductase-A in the brain of subjects with Alzheimer's disease and amnestic mild cognitive impairment. J Alzheimers Dis. 2011; 25 (4): 623-633. Available in: https://doi.org/10.3233/JAD-2011-110092

  17. Romo-Araiza A, Ibarra A. Prebiotics and probiotics as potential therapy for cognitive impairment. Med Hypotheses. 2020; 134: 109410. Available in: https://doi.org/10.1016/j.mehy.2019.109410

  18. Marcinkowska M, Bucki A, Panek D, Siwek A, Fajkis N, Bednarski M et al. Anti-Alzheimer's multi target-directed ligands with serotonin 5-HT6 antagonist butyrylcholinesterase inhibitory and antioxidant activity. Arch Pharm (Weinheim). 2019; 352 (7): e1900041. Available in: https://doi.org/10.1002/ardp.201900041

  19. Tapiola T, Pennanen C, Tapiola M, Tervo S, Kivipelto M, Hanninen T et al. MRI of hippocampus and entorhinal cortex in mild cognitive impairment: a follow-up study. Neurobiol Aging. 2008; 29 (1): 31-38. Available in: https://doi.org/10.1016/j.neurobiolaging.2006.09.007

  20. Masliah E, Mallory M, Alford M, DeTeresa R, Hansen LA, McKeel DW Jr. et al. Altered expression of synaptic proteins occurs early during progression of Alzheimer's disease. Neurology. 2001; 56 (1): 127-129. Available in: https://doi.org/10.1212/wnl.56.1.127

  21. Celone KA, Calhoun VD, Dickerson BC, Atri A, Chua EF, Miller SL et al. Alterations in memory networks in mild cognitive impairment and Alzheimer's disease: an independent component analysis. J Neurosci. 2006; 26 (40): 10222-10231. Available in: https://doi.org/10.1523/JNEUROSCI.2250-06.2006

  22. Vana L, Kanaan NM, Ugwu IC, Wuu J, Mufson EJ, Binder LI. Progression of tau pathology in cholinergic Basal forebrain neurons in mild cognitive impairment and Alzheimer's disease. Am J Pathol 2011; 179 (5): 2533-2550. Available in: https://doi.org/10.1016/j.ajpath.2011.07.044

  23. Rundek T, Tolea M, Ariko T, Fagerli EA. Camargo C J 2021 vascular cognitive impairment (VCI). Neurotherapeutics. Neurotherapeutics. 2022; 19: 68-88. Available in: https://doi.org/10.1007/s13311-021-01170-y

  24. Wu CC, Mungas D, Petkov CI, Eberling JL, Zrelak PA, Buonocore MH et al. Brain structure and cognition in a community sample of elderly. Latinos Neurology. 2002; 59 (3): 383-391. Available in: https://doi.org/10.1212/wnl.59.3.383

  25. DeCarli C. Mild cognitive impairment: prevalence prognosis etiology and treatment. Lancet Neurol. 2003; 2 (1): 15-21. Available in: https://doi.org/10.1016/s1474-4422(03)00262-x

  26. Sharma MJ, Callahan BL. Cerebrovascular and neurodegenerative pathologies in long-term stable mild cognitive impairment. J Alzheimers Dis. 2021; 79 (3): 1269-1283. Available in: https://doi.org/10.3233/JAD-200829

  27. Caunca MR, De Leon-Benedetti A, Latour L, Leigh R, Wright CB. Neuroimaging of cerebral small vessel disease and age-related cognitive changes. Front Aging Neurosci. 2019; 11: 145. Available in: https://doi.org/10.3389/fnagi.2019.00145

  28. Garcia-Ptacek S, Farahmand B, Kareholt I, Religa D, Cuadrado ML, Eriksdotter M. Mortality risk after dementia diagnosis by dementia type and underlying factors: a cohort of 15,209 patients based on the swedish dementia registry. J Alzheimers Dis. 2014; 41 (2): 467-477. Available in: https://doi.org/10.3233/JAD-131856

  29. Bradburn S, Murgatroyd C, Ray N. Neuroinflammation in mild cognitive impairment and Alzheimer's disease: A meta-analysis. Ageing Res Rev. 2019; 50: 1-8. Available in: https://doi.org/10.1016/j.arr.2019.01.002

  30. Newcombe EA, Camats-Perna J, Silva ML, Valmas N, Huat TJ, Medeiros R. Inflammation: the link between comorbidities genetics and Alzheimer's disease. J Neuroinflammation. 2018; 15 (1): 276. Available in: https://doi.org/10.1186/s12974-018-1313-3

  31. Cherry JD, Olschowka JA, Banion MK. Neuroinflammation and M2 microglia: the good the bad and the inflamed. J Neuroinflammation. 2014; 11: 98. Available in: https://doi.org/10.1186/1742-2094-11-98

  32. Baierle M, Nascimento SN, Moro AM, Brucker N, Freitas F, Gauer B et al. Relationship between inflammation and oxidative stress and cognitive decline in the institutionalized elderly. Oxid Med Cell Longev. 2015; 2015: 804198. Available in: https://doi.org/10.1155/2015/804198

  33. Di Filippo M, Chiasserini D, Gardoni F, Viviani B, Tozzi A, Giampa C et al. Effects of central and peripheral inflammation on hippocampal synaptic plasticity. Neurobiol Dis. 2013; 52: 229-236. Available in: https://doi.org/10.1016/j.nbd.2012.12.009

  34. Aharoni R. The mechanism of action of glatiramer acetate in multiple sclerosis and beyond. Autoimmun Rev. 2013; 12 (5): 543-553. Available in: https://doi.org/10.1016/j.autrev.2012.09.005

  35. Cruz Y, Garcia EE, Galvez JV, Arias-Santiago SV, Carvajal HG, Silva-Garcia R et al. Release of interleukin-10 and neurotrophic factors in the choroid plexus: possible inductors of neurogenesis following copolymer-1 immunization after cerebral ischemia. Neural Regen Res. 2018; 13 (10): 1743-1752. Available in: https://doi.org/10.4103/1673-5374.238615

  36. Yoshii A, Constantine-Paton M. Postsynaptic BDNF-TrkB signaling in synapse maturation plasticity and disease. Dev Neurobiol. 2010; 70 (5): 304-322. Available in: https://doi.org/10.1002/dneu.20765

  37. Butovsky O, Koronyo-Hamaoui M, Kunis G, Ophir E, Landa G, Cohen H et al. Glatiramer acetate fights against Alzheimer's disease by inducing dendritic- like microglia expressing insulin-like growth factor 1. Proc Natl Acad Sci USA. 2006; 103 (31): 11784-11789. Available in: https://doi.org/10.1073/pnas.0604681103

  38. Penner MR, Roth TL, Barnes CA, Sweatt JD. An epigenetic hypothesis of aging-related cognitive dysfunction. Front Aging Neurosci. 2010; 2: 9. Available in: https://doi.org/10.3389/fnagi.2010.00009

  39. Park H, Poo MM. Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci. 2013; 14 (1): 7-23. Available in: https://doi.org/10.1038/nrn3379

  40. Di Benedetto S, Muller L, Wenger E, Duzel S, Pawelec G. Contribution of neuroinflammation and immunity to brain aging and the mitigating effects of physical and cognitive interventions. Neurosci Biobehav Rev. 2017; 75: 114-128. Available in: https://doi.org/10.1016/j.neubiorev.2017.01.044

  41. Kawachi I, Lassmann H. Neurodegeneration in multiple sclerosis and neuromyelitis optica. J Neurol Neurosurg Psychiatry. 2017; 88 (2): 137-145. Available in: https://doi.org/10.1136/jnnp-2016-313300

  42. Sumowski JF, Benedict R, Enzinger C, Filippi M, Geurts JJ, Hamalainen P et al. Cognition in multiple sclerosis: State of the field and priorities for the future. Neurology. 2018; 90 (6): 278-288. Available in: https://doi.org/10.1212/WNL.0000000000004977

  43. Aharoni R, Schottlender N, Bar-Lev DD, Eilam R, Sela M, Tsoory M et al. Cognitive impairment in an animal model of multiple sclerosis and its amelioration by glatiramer acetate. Sci Rep. 2019; 9 (1): 4140. Available in: https://doi.org/10.1038/s41598-019-40713-4

  44. Chen L, Yao Y, Wei C, Sun Y, Ma X, Zhang R et al. T cell immunity to glatiramer acetate ameliorates cognitive deficits induced by chronic cerebral hypoperfusion by modulating the microenvironment. Sci Rep. 2015; 5: 14308. Available in: https://doi.org/10.1038/srep14308

  45. He F, Zou JT, Zhou QF, Niu DL, Jia WH. Glatiramer acetate reverses cognitive deficits from cranial-irradiated rat by inducing hippocampal neurogenesis. J Neuroimmunol. 2014; 271 (1-2): 1-7. Available in: https://doi.org/10.1016/j.jneuroim.2014.03.015

  46. Schwid SR, Goodman AD, Weinstein A, McDermott MP, Johnson KP. Copaxone study G Cognitive function in relapsing multiple sclerosis: minimal changes in a 10-year clinical trial. J Neurol Sci. 2007; 255 (1-2): 57-63. Available in: https://doi.org/10.1016/j.jns.2007.01.070

  47. Ziemssen T, Calabrese P, Penner IK, Apfel R. QualiCOP: real-world effectiveness tolerability and quality of life in patients with relapsing-remitting multiple sclerosis treated with glatiramer acetate treatment-naive patients and previously treated patients. J Neurol. 2016; 263 (4): 784-791. Available in: https://doi.org/10.1007/s00415-016-8058-7

  48. Ahmad MA, Kareem O, Khushtar M, Akbar M, Haque MR, Iqubal A et al. Neuroinflammation: a potential risk for dementia. Int J Mol Sci. 2022; 23 (2): Available in: https://doi.org/10.3390/ijms23020616

  49. Stern JN, Keskin DB, Zhang H, Lv H, Kato Z, Strominger JL. Amino acid copolymer-specific IL-10-secreting regulatory T cells that ameliorate autoimmune diseases in mice. Proc Natl Acad Sci USA. 2008; 105 (13): 5172-5176. Available in: https://doi.org/10.1073/pnas.0712131105




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Neurol Neurocir Psiquiat. 2023;51