medigraphic.com
SPANISH

Medicina Interna de México

Colegio de Medicina Interna de México.
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2024, Number 06

<< Back Next >>

Med Int Mex 2024; 40 (06)

Health effects and risks of arsenic exposure

Gutiérrez JL, Reyna SK, Cota PC, Sosa UB, López RCA, Torres BO
Full text How to cite this article

Language: Spanish
References: 53
Page: 356-364
PDF size: 218.40 Kb.


Key words:

Arsenic, Genotoxic effects, Oxidative stress, Public health.

ABSTRACT

Background: Arsenic is an omnipresent and highly toxic metalloid that can impair quality of life or lead to death. It is found pure or in combination with other metals in trace concentrations in all natural environments and in high concentrations in deep aquifers, in addition to different environments that are rapidly polluted by anthropogenic processes.
Objetives: To describe the biological, cytotoxic and genotoxic effects of arsenic on human being.
Methodology: A simple bibliographic review was carried out. Databases such as PubMed, Toxichem Krimtech, Clinical-key, and Academic Google were used. Articles in English, Spanish and German, done from 1993 to 2021, national and international, were included. The search words used were: As, arsenic, inorganic, genotoxicity, cytotoxicity, toxicity, intoxication, epigenetics, exposure, micronuclei, biomarkers, DNA damage, and human.
Results: There were included 56 articles. Millions of people are exposed to arsenic. The inorganic forms, specifically the trivalent, are the most harmful. This metalloid causes several diseases mainly due to oxidative stress.
Conclusions: Arsenic is an international public health problem that affects millions of people. This problem is not addressed with the necessary measures to mitigate the deleterious effects of this metalloid.


REFERENCES

  1. Garbinski L, Rosen B, Chen J. Pathways of arsenic uptakeand efflux. Environ Int 2019; 126: 585-597. https://doi.org/10.1016/j.envint.2019.02.058

  2. IARC I. monographs on the evaluation of carcinogenic risksto humans: Arsenic, metals, fibres, and dusts. A review ofhuman carcinogens. IARC 2012; 100.

  3. Substance Priority List | ATSDR. Agency for Toxic Substancesand Disease Registry 2019.

  4. Ozturk M, Metin M, Altay V, Bhat R, et al. Arsenic andhuman health: Genotoxicity, epigenomic effects, andcancer signaling. Biol Trace Elem Res 2021. https://doi.org/10.1007/s12011-021-02719-w

  5. Moore C, Flanigan T, Law C, Loukotková L, et al. Developmentalneurotoxicity of inorganic arsenic exposure inSprague-Dawley rats. Neurotoxicol Teratol 2019; 72: 49-57.https://doi.org/10.1016/j.ntt.2019.01.007

  6. Bjørklund G, Tippairote T, Rahaman M, Aaseth J. Developmentaltoxicity of arsenic: a drift from the classical doseresponserelationship. Arch Toxicol 2020; 94 (1): 67-75.https://doi.org/10.1007/s00204-019-02628-x

  7. Alvarenga I, Dos Santos F, Silveira GL, Andrade-Vieira L,Martins G, Guilherme L. Investigating arsenic toxicity intropical soils: A cell cycle and DNA fragmentation approach.Sci Total Environ 2020; 698: 134272. https://doi.org/10.1016/j.scitotenv.2019.134272

  8. De Loma J, Tirado N, Ascui F, Levi M, et al. Elevated arsenicexposure and efficient arsenic metabolism in indigenouswomen around Lake Poopó, Bolivia. Sci Total Environ2019; 657: 179-186. https://doi.org/10.1016/j.scitotenv.2018.11.473

  9. Palma-Lara I, Martínez-Castillo M, Quintana-Pérez JC,Arellano-Mendoza MG, et al. . Arsenic exposure: A publichealth problem leading to several cancers. RegulToxicol Pharmacol 2020; 110: 104539. doi: 10.1016/j.yrtph.2019.104539

  10. Molin M, Ulven S, Dahl L, Lundebye A, et al. Arsenic inseafood is associated with increased thyroid-stimulatinghormone (TSH) in healthy volunteers - A randomizedcontrolled trial. J Trace Elem Med 2017; B2016iol 44: 1-7.https://doi.org/10.1016/j.jtemb.2017.05.004

  11. Ghabaee D, Amiri F, Moghaddam A, Khakatbary A, ZargariM. Administration of zinc against arsenic-induced nephrotoxicityduring gestation and lactation in raton model. J.Nephropathol 2017; 6: 74-80. https://doi.org/10.15171/jnp.2017.13

  12. Laine J, Bailey K, Rubio-Andrade M, Olshan A, et al. Maternalarsenic exposure, arsenic methylation efficiency,and birth outcomes in the Biomarkers of Exposure to ARsenic(BEAR) pregnancy cohort in Mexico. Environ HealthPerspect 2015; 123: 186-192. https://doi.org/10.1289/ehp.1307476

  13. World Health Organization (WHO). World Health Organization(WHO) Guidelines for Drinking-Water QualityWHO 1993; Geneva, Switzerland https://apps.who.int/iris/handle/10665/259956

  14. Bjørklund G, Aaseth J, Chirumbolo S, Urbina M, Uddin R.Effects of arsenic toxicity beyond epigenetic modifications.Environ Geochem Health 2018; 40 (3): 955-965.

  15. Rahaman M, Rahman M, Mise N, Sikder M, et al. Environmentalarsenic exposure and its contribution to humandiseases, toxicity mechanism and management. EnvironPollut 2021; 15 (289): 117940. https://doi.org/ 10.1016/j.envpol.2021.117940

  16. Garza-Lombó C, Pappa A, Panayiotidis M, Gonsebatt M,Franco R. Arsenic-induced neurotoxicity: a mechanisticappraisal. J Biol Inorg Chem 2019; 24 (8): 1305-1316.https://doi.org/10.1007/s00775-019-01740-8

  17. Minatel B, Sage A, Anderson C, Hubaux R, et al. Environmentalarsenic exposure: From genetic susceptibility topathogenesis. Environ Int 2018; 112: 183-197. https://doi.org/10.1016/j.envint.2017.12.017

  18. Mochizuki H. Arsenic neurotoxicity in humans. Int J Mol Sci2019; 20 (14): 341. https://doi.org/10.3390/ijms20143418

  19. Medda N, De S, Maiti S. Different mechanisms of arsenicrelated signaling in cellular proliferation, apoptosis andneo-plastic transformation. Ecotoxicol Environ 2021; 208:111752. https://doi.org/10.1016/j.ecoenv.2020.111752

  20. Chen Q, Costa M. Arsenic: A global environmental challenge.Annu Rev Pharmacol Toxicol 2021; 61: 47-63. https://doi.org/ 10.1146/annurev-pharmtox-030220-013418

  21. Lozano E, Bocanegra M, Cervantes M, Rocha D, et al.Evaluación de daño genotóxico y neurotóxico en poblaciónexpuesta a flúor y arsénico. Rev Mex CienciasFarmacéuticas 2016; 47; 45-50. https://www.redalyc.org/pdf/579/57956610005.pdf

  22. Huang H, Lee C, Yu H. Arsenic-induced carcinogenesisand immune dysregulation. Int J Environ Res PublicHealth 2019; 16 (15): 2746. https://doi.org/10.3390/ijerph16152746

  23. Suárez L, Tamayo Y, Rodriguez I, Hernández G, de la Uz B.Tratamiento con trióxido de arsénico en pacientes con leucemiapromielocítica aguda. Medisan 2014; 18 (1): 25-33.

  24. Annangi B, Bonassi S, Marcos R, Hernández A. Biomonitoringof humans exposed to arsenic, chromium, nickel,vanadium, and complex mixtures of metals by using themicronucleus test in lymphocytes. Mutat Res2016; 770(Pt A): 140-161.

  25. Schroeder C, Arndt T. Problematik, Klinik und Beispieleder Spurenelementvergiftung-Arsen. Toxichem Krimtech2015; 82 (3): 327.

  26. Melak D, Ferreccio C, Kalman D. Arsenic methylation andlung and bladder cancer in a case-control study in northernChile. Nat Inst Health 2014; 274 (2): 225-231. https://doi.org/10.1016/j.taap.2013.11.014

  27. Navasumrit P, Chaisatra K, Promvijit J, Parnlob V, et al.Exposure to arsenic in utero is associated with varioustypes of DNA damage and micronuclei in newborns: a birthcohort study. Environ Health 2019; 18 (1): 5. https://doi.org/10.1186/s12940-019-0481-7

  28. Working Group on the Evaluation of Carcinogenic Risksto Humans. 2004; https://monographs.iarc.who.int/wpcontent/uploads/2018/06/mono84.pdf

  29. Jiménez-Villarreal J, Rivas-Armendariz D, Pineda-BelmontesC, Betancourt-Martínez N, et al. Detection of damage onsingle- or double-stranded DNA in a population exposedto arsenic in drinking water. Genet Mol Res 2017; 16 (2).https://doi.org/10.4238/gmr16029241

  30. Lu T, Su C, Chen Y, Yang C, et al. Arsenic induces pancreaticβ-cell apoptosis via the oxidative stress-regulatedmitochondria-dependent and endoplasmic reticulumstress-triggered signaling pathways. Toxicol Lett 2011;201, 15-26. https://doi.org/10.1016/j.toxlet.2010.11.019

  31. Thakur M, Rachamalla M, Niyogi S, Datusalia A, Flora S.Molecular mechanism of arsenic-induced neurotoxicityincluding neuronal dysfunctions. Int J Mol Sci 2021; 22 (18):10077. https://doi.org/10.3390/ijms221810077

  32. Bustaffa E, Stoccoro A, Bianchi F, Migliore, L. Genotoxicand epigenetic mechanisms in arsenic carcinogenicity. ArchToxicol 2014; 88 (5): 1043-1067. https://doi.org/10.1007/s00204-014-1233-7

  33. Frost G, Li Y. The role of astrocytes in amyloid productionand Alzheimer’s disease. Open Biol 2017; 7 (12): 170228.https://doi.org/10.1098/rsob.170228

  34. Medda N, Patra R, Ghosh T, Maiti S. Neurotoxic mechanismof arsenic: synergistic effect of mitochondrial instability,oxidative stress, and hormonal-neurotransmitter impairment.Biol Trace Elem Res 2020;198 (1):8-15. https://doi.org/10.1007/s12011-020-02044-8

  35. Niño S, Martel G, Castro A. Ortega B, et al. Chronic arsenicexposure increases Aβ(1-42) Production and receptor foradvanced glycation end products expression in rat brain.Chem Res Toxicol 2017; 31: 13-21. https://doi.org/10.1021/acs.chemrestox.7b00215

  36. Tolins M, Ruchirawat M, Landrigan P. The developmentalneurotoxicity of arsenic: cognitive and behavioral consequencesof early life exposure. Ann Global Health 2014; 80(4): 303-314. https://doi.org/10.1016/j.aogh.2014.09.005

  37. Li, Z, Li, X, Qian, Y, Guo C, et al. The sustaining effects ofe-waste-related metal exposure on hypothalmuspituitaryadrenalaxis reactivity and oxidative stress. Sci TotalEnviron 2020; 739: 139. https://doi.org/ 10.1016/j.scitotenv.2020.139964

  38. Yang Y, Liou S, Hsueh Y, Lyu W, et al. Risk of Alzheimer’sdisease with metal concentrations in whole blood and urine:A case–control study using propensity score matching.Toxicol Appl 2018; 356: 8-14 https://doi.org/10.1016/j.taap.2018.07.015364Medicina Interna de México 2024;

  39. Sharma B, Sharma P. Arsenic toxicity induced endothelialdysfunction and dementia: Pharmacological interdictionby histone deacetylase and inducible nitric oxide synthaseinhibitors. Toxicol Appl Pharmacol 2013; 273: 180-188.https://doi.org/10.1016/j.taap.2013.07.017

  40. Gouras G, Olsson T, Hansson O. β-amyloid peptides andamyloid plaques in Alzheimer’s disease. Neurotherapeutics2015; 12: 3-11. https://doi.org/10.1007/s13311-014-0313-y

  41. Suhl J, Leonard S, Weyer P, Rhoads A, et al. Maternal arsenicexposure and nonsyndromic orofacial clefts. Birth DefectsRes 2018; 110 (19): 1455-1467. https://doi.org/10.1002/bdr2.1386

  42. Zhong Q, Cui Y, Wu H, Niu Q, et al. Association of maternalarsenic exposure with birth size: A systematic review andmeta-analysis. Environ Toxicol Pharmacol 2019; 69: 129-136. https://doi.org/10.1016/j.etap.2019.04.007

  43. Lehman, Geniece M, Mccabe J, Michael J. Arsenite slows Sphase progression via inhibition of cdc25A dual specificityphosphatase gene transcription. Toxicological Sci 2007; 99(1): 70-78. https://doi.org/10.1093/toxsci/kfm142

  44. Park W, Cho Y, Jung C, Park J, et al. Arsenic trioxide inhibitsthe growth of A498 renal cell carcinoma cells via cell cyclearrest or apoptosis. Biochem Biophys 2003; 230-235.https://doi.org/10.1016/s0006-291x(02)02831-0

  45. Roy JS, Chatterjee D, Das N, Giri AK. Substantial Evidencesindicate that inorganic arsenic is a genotoxic carcinogen:A review. Toxicol Res 2018; 34 (4): 311-324. https://doi.org/10.5487/TR.2018.34.4.311

  46. Martinez V, Vucic E, Adonis M, Gil L, Lam L. Arsenic biotransformationas a cancer promoting factor by inducingDNA damage and disruption of repair mechanisms. MolBiol 2011; 1-11. https://doi.org/10.4061/ 2011/718974

  47. Zhou Q, Xi S. A review on arsenic carcinogenesis: epidemiology,metabolism, genotoxicity and epigenetic changes.Regul Toxicol Pharmacol 2018; 99: 78-88. https://doi.org/10.1016/j.yrtph.2018.09.010

  48. Zhang A, Gao C, Han X, et al. Inactivation of p15ink4b inchronic arsenic poisoning cases. Elsevier 2014; 692-698.https://doi.org/10.1016/j.toxrep.2014.08.007

  49. Joyce B, Gao T, Zheng Y, Liu L, et al. Prospective changesin global DNA methylation and cancer incidence andmortality. Br J Cancer 2016; 115: 465-472. https://doi.org/10.1038/bjc.2016.205

  50. Mauro M, Caradonna F, Klein C. Dysregulation of DNAmethylation induced by past arsenic treatment causespersistent genomic instability in mammalian cells. EnvironMol Mutagenesis 2016; 57: 137-150. https://doi.org/10.1002/em.21987

  51. Chakraborty A, Ghosh S, Biswas B, Pramanik S, et al. Epigeneticmodifications from arsenic exposure: A comprehensivereview. Sci Total Environ 2022; 810: 151218. https://doi.org/10.1016/j.scitotenv.2021.151218

  52. De Loma J, Krais A, Lindh C, Mamani J, et al. Arsenic exposureand biomarkers for oxidative stress and telomere length inindigenous populations in Bolivia. Ecotoxicol Environ Saf 2022;231: 113194. https://doi.org/10.1016/j.ecoenv.2022.113194

  53. Sage A, Minatel B, Ng K, Stewart G, et al. Oncogenomicdisruptions in arsenic-induced carcinogenesis. Oncotarget2017; 8 (15): 25736-25755. https://doi.org/10.18632/oncotarget.15106




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Med Int Mex. 2024;40