medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2023, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2023; 26 (1)

Phage endolysins as molecular tools against gram-negative bacteria

Juárez-Cortés MZ, Castellón-Avalos M, Zermeño-Cervantes LA, Cardona-Félix CS
Full text How to cite this article

Language: Spanish
References: 90
Page: 1-13
PDF size: 548.42 Kb.


Key words:

phage lytic enzymes, bacteriophages, Gram-negative bacteria, antibacterial activity, endolysins.

ABSTRACT

Recently, lytic enzymes encoded by bacteriophages or phages (endolysins) have been proposed as an alternative to combat pathogenic bacteria. The antibacterial character of these enzymes results from their ability to hydrolyze peptidoglycan activity, which composes the bacterial cell wall. Endolysins are characterized by a narrow spectrum of action, rapid bactericidal effect, low probability of bacterial resistance, harmlessness, and effectiveness against antibiotic-resistant pathogens. Thanks to sequencing platform accessibility and massive data analysis, many endolysin-encoding genes have been identified within phage genomes. Moreover, their bactericidal activity can be enhanced by manipulating their functional domains through protein engineering. Notably, this manipulation can broaden their bactericidal spectrum against Gram-negative bacteria, which are mostly insensitive to their effect. The fusion of peptides capable of permeabilizing the outer membrane has expanded the application of these endolysins against pathogens of critical priority. There are research groups worldwide with outstanding developments and patents with this technology. However, in Mexico, it is a line of research little explored. With this work, we intend to disseminate this new generation of antibacterials.


REFERENCES

  1. Abdelrahman, F., Easwaran, M., Daramola, O. I., Ragab, S.,Lynch, S., Oduselu, T. J., Khan, F. M., Ayobami, A., Adnan,F., Torrents, E., Sanmukh, S. & El-Shibiny, A. (2021).Phage-encoded endolysins. Antibiotics, 10(2), 124. DOI:10.3390/antibiotics10020124

  2. Alcalde-Alvites, M. A. (2016). Software libre enfocados endiversos campos de las ciencias biológicas. HAMUT’AY, 3(1), 59-70. DOI: 10.21503/hamu.v3i1.1000

  3. Antonova, N. P., Vasina, D. V., Lendel, A. M., Usachev, E.V., Makarov, V. V., Gintsburg, A. L., Tkachuk, A. P. &Gushchin, V. A. (2019). Broad bactericidal activity of theMyoviridae bacteriophage lysins Lysam24, Lysecd7, andLyssi3 against Gram-negative ESKAPE pathogens. Viruses,11(3), 284. DOI: 10.3390/v11030284

  4. Antonova, N. P., Vasina, D. V., Rubalsky, E. O., Fursov,M. V., Savinova, A. S., Grigoriev, I. V., Usachev, E. V.,Shevlyagina, N. V., Zhukhovitsky, V. G., Balabanyan,V. U., Potapov, V., Aleshkin, A., Makarov, V., Yudin, S.,Gintsburg, A., Tkachuk, A. & Gushchin, V. A. (2020).Modulation of endolysin LysECD7 bactericidal activityby different peptide tag fusion. Biomolecules, 10(3), 440.DOI: 10.3390/biom10030440

  5. Bai, J., Yang, E., Chang, P.-S. & Ryu, S. (2019). Preparationand characterization of endolysin-containing liposomes andevaluation of their antimicrobial activities against Gramnegativebacteria. Enzyme and Microbial Technology, 128,40-48. DOI: 10.3390/v10060288

  6. Birrell, M. T., Horne, K. & Rogers, B. A. (2021). Potentialinterventions for an antimicrobial stewardship bundlefor Escherichia coli bacteraemia. International Journalof Antimicrobial Agents, 57(4), 106301. DOI: 10.1016/j.ijantimicag.2021.106301

  7. Briers, Y., Walmagh, M., Van Puyenbroeck, V., Cornelissen, A.,Cenens, W., Aertsen, A., Oliveira, H., Azeredo, J., Verween,G., Pirnay, J.-P., Miller, S., Volckaert, G. & Lavigne, R.(2014). Engineered endolysin-based “Artilysins” to combatmultidrug-resistant Gram-negative pathogens. MBio, 5(4),e01379-14. DOI: 10.1128/mBio.01379-14

  8. Briers, Y., Volckaert, G., Cornelissen, A., Lagaert, S., Michiels,C. W., Hertveldt, K. & Lavigne, R. (2007). Muralytic activityand modular structure of the endolysins of Pseudomonasaeruginosa bacteriophages phiKZ and EL. MolecularMicrobiology, 65, 1334-1344. DOI: 10.1111/j.1365-2958.2007.05870.x

  9. Bugg,T. D. H.(1999). Bacterial Peptidoglycan Biosynthesis andits Inhibition. Comprehensive Natural Product Chemistry,3(371), 241-294. DOI: 10.1128/aac.31.7.1093

  10. Butt, S. S., Badshah, Y., Shabbir, M. & Rafiq, M. (2020).Molecular docking using chimera and autodock vinasoftware for nonbioinformaticians. JMIR Bioinformaticsand Biotechnology, 1(1), e14232. DOI: 10.2196/14232

  11. Callewaert, L., Walmagh, M., Michiels, C. W. & Lavigne, R.(2011). Food applications of bacterial cell wall hydrolases.Current Opinion in Biotechnology, 22(2), 164-171. DOI:10.1016/j.copbio.2010.10.012

  12. Camarillo-Guerrero, L. F., Almeida, A., Rangel-Pineros, G.,Finn, R. D. & Lawley, T. D. (2021). Massive expansionof human gut bacteriophage diversity. Cell, 184(4), 1098-1109. DOI: 10.1016/j.cell.2021.01.029

  13. Centers for Disease Control and Prevention (CDC). (2019).Antibiotic resistance threats in the United States, 2019.Recuperado 16 de abril de 2023 de: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threatsreport-508.pdf

  14. Defraine, V., Schuermans, J., Grymonprez, B., Govers, S. K.,Aertsen, A., Fauvart, M., Michiels, J., Lavigne, R. & Briers,Y. (2016). Efficacy of Artilysin Art-175 against Resistantand Persistent Acinetobacter baumannii. AntimicrobialAgents and Chemotherapy, 60, 3480-3488. DOI: 10.1128/AAC.00285-16

  15. Delcour, A. H. (2009). Outer membrane permeability andantibiotic resistance. Biochimica et Biophysica Acta(BBA) - Proteins and Proteomics, 1794(5), 808-816. DOI:10.1016/j.bbapap.2008.11.005

  16. Díez-Martínez, R., De Paz, H., Bustamante, N., García, E.,Menéndez, M. & García, P. (2013). Improving the lethaleffect of Cpl-7, a pneumococcal phage lysozyme withbroad bactericidal activity, by inverting the net chargeof its cell wall-binding module. Antimicrobial Agentsand Chemotherapy, 57(11), 5355-5365. DOI: 10.1128/AAC.01372-13

  17. Díaz, E., López, R. & García, J. L. (1990). Chimeric phagebacterialenzymes: A clue to the modular evolution of genes.Proceedings of the National Academy of Sciences, 87(20),8125-8129. DOI: 10.1073/pnas.87.20.8125

  18. Dörr, T., Moynihan, P. J. & Mayer, C. (2019). Bacterial cellwall structure and dynamics. Frontiers in Microbiology,10, 2051. DOI: 10.3389/fmicb.2019.02051

  19. Doss, J., Culbertson, K., Hahn, D., Camacho, J. & Barekzi,N. (2017). A review of phage therapy against bacterialpathogens of aquatic and terrestrial organisms. Viruses,9(3), 50. DOI: 10.3390/v9030050

  20. Fischetti, V. A. (2005). Bacteriophage lytic enzymes: Novelanti-infectives. Trends in Microbiology, 13(10), 491-496.DOI: 10.1016/j.tim.2005.08.007

  21. Fischetti, V. A. (2008). Bacteriophage lysins as effectiveantibacterials. Current Opinion in Microbiology, 11(5),393-400. DOI: 10.1016/j.mib.2008.09.012

  22. Fischetti, V. A. (2010). Bacteriophage endolysins: A novel antiinfectiveto control Gram-positive pathogens. InternationalJournal of Medical Microbiology, 300(6), 357-362. DOI:10.1016/j.ijmm.2010.04.002

  23. García-Gómez, E. & González-Pedrajo, B. (2011).Transglicosilasas líticas asociadas a los sistemas de secreciónen bacterias Gram-negativas. Revista de EducaciónBioquímica, 30(2), 45-55. https://www.medigraphic.com/cgi-bin/new/resumenI.cgi?IDARTICULO=36156

  24. Gerstmans, H., Criel, B. & Briers, Y. (2018). Synthetic biologyof modular endolysins. Biotechnology Advances, 36(3),624-640. DOI: 10.1016/j.biotechadv.2017.12.009

  25. Ghai, I. & Ghai, S. (2018). Understanding antibiotic resistancevia outer membrane permeability. Infection and DrugResistance, 11, 523-530. DOI: 10.2147/IDR.S156995

  26. Górski, A., Międzybrodzki, R., Łobocka, M., Głowacka-Rutkowska, A., Bednarek, A., Borysowski, J., Jończyk-Matysiak, E., Łusiak-Szelachowska, M., Weber-Dąbrowska,B., Bagińska, N., Letkiewicz, S., Dąbrowska, K. & Scheres,J. (2018). Phage Therapy: What Have We Learned?. Viruses,10(6), 288. DOI: 10.3390/v10060288

  27. Guo, M., Feng, C., Ren, J., Zhuang, X., Zhang, Y., Zhu, Y.,Dong, K., He, P., Guo, X. & Qin, J. (2017). A novelantimicrobial endolysin, LysPA26, against Pseudomonasaeruginosa. Frontiers in Microbiology, 8, 293. DOI:10.3389/fmicb.2017.00293

  28. Heselpoth, R. D., Euler, C. W., Schuch, R., & Fischetti, V.A. (2019). Lysocins: Bioengineered antimicrobials thatdeliver lysins across the outer membrane of Gram-negativebacteria. Antimicrobial Agents and Chemotherapy, 63(6),e00342-19. DOI: 10.1128/AAC.00342-19

  29. Ho, M. K. Y., Zhang, P., Chen, X., Xia, J. & Leung, S. S. Y.(2022). Bacteriophage endolysins against gram-positivebacteria, an overview on the clinical development andrecent advances on the delivery and formulation strategies.Critical Reviews in Microbiology, 48(3), 303-326. DOI:10.1080/1040841X.2021.1962803

  30. Horne, J. E., Brockwell, D. J. & Radford, S. E. (2020). Roleof the lipid bilayer in outer membrane protein folding inGram-negative bacteria. Journal of Biological Chemistry,295(30), 10340-10367. DOI: 10.1074/jbc.REV120.011473

  31. Höltje, J. V. & Tomasz, A. (1975). Lipoteichoic acid: Aspecific inhibitor of autolysin activity in Pneumococcus.Proceedings of the National Academy of Sciences, 72(5),1690-1694. DOI: 10.1073/pnas.72.5.1690

  32. Jarábková, V., Tišáková, L., Benešík, M. & Godány, A. (2021).SH3 binding domains from phage endolysins: How to usethem for detection of Gram-positive pathogens. Journalof Microbiology, Biotechnology and Food Sciences, 2021,1215-1220. DOI: 10.15414/jmbfs.2020.9.6.1215-1220

  33. Kashani, H., Schmelcher, M., Sabzalipoor, H., Seyed Hosseini,E. & Moniri, R. (2018). Recombinant endolysins as potentialtherapeutics against antibiotic-resistant Staphylococcusaureus: Current Status of Research and Novel DeliveryStrategies. Clinical Microbiology Reviews, 31(1), e00071-17. DOI: 10.1128/CMR.00071-17

  34. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg,M. J. (2015). The Phyre2 web portal for protein modeling,prediction and analysis. Nature Protocols, 10(6), 845-858.DOI: 10.1038/nprot.2015.053

  35. Korndörfer, I. P., Kanitz, A., Danzer, J., Zimmer, M., Loessner,M. J. & Skerra, A. (2008). Structural analysis of thel-alanoyl-d-glutamate endopeptidase domain of Listeriabacteriophage endolysin Ply500 reveals a new member ofthe LAS peptidase family. Acta Crystallographica SectionD: Biological Crystallography, 64(6), 644-650. DOI:10.1107/S0907444908007890

  36. Kortright, K. E., Chan, B. K., Koff, J. L. & Turner, P. E. (2019).Phage therapy: A renewed approach to combat antibioticresistantbacteria. Cell Host & Microbe, 25(2), 219-232.DOI: 10.1016/j.chom.2019.01.014

  37. Lai, M. J., Soo, P. C., Lin, N. T., Hu, A., Chen, Y. J., Chen, L. K.& Chang, K. C. (2013). Identification and characterisation ofthe putative phage-related endolysins through full genomesequence analysis in Acinetobacter baumannii ATCC 17978.International Journal of Antimicrobial Agents, 42(2), 141-148. DOI: 10.1016/j.ijantimicag.2013.04.022

  38. Lai, W. C. B., Chen, X., Ho, M. K. Y., Xia, J. & Leung, S. S. Y.(2020). Bacteriophage-derived endolysins to target Gramnegativebacteria. International Journal of Pharmaceutics,589, 119833. DOI: 10.1016/j.ijpharm.2020.119833

  39. Lai, C. C., Chen, S. Y., Ko, W. C. & Hsueh, P. R. (2021).Increased antimicrobial resistance during the COVID-19pandemic. International Journal of Antimicrobial Agents,57(4), 106324. DOI: 10.1016/j.ijantimicag.2021.106324

  40. Larpin, Y., Oechslin, F., Moreillon, P., Resch, G., Entenza,J. M. & Mancini, S. (2018). In vitro characterization ofPlyE146, a novel phage lysin that targets Gram-negativebacteria. PLoS One, 13(2), e0192507. DOI: 10.1371/journal.pone.0192507

  41. Lin, D. M., Koskella, B. & Lin, H. C. (2017). Phage therapy: Analternative to antibiotics in the age of multi-drug resistance.World Journal of Gastrointestinal Pharmacology andTherapeutics, 8(3), 162. DOI: 10.4292/wjgpt.v8.i3.162

  42. Lima, R., Del Fiol, F. S. & Balcão, V. M. (2019). Prospects forthe use of new technologies to combat multidrug-resistantbacteria. Frontiers in Pharmacology, 10, 692. DOI: 10.3389/fphar.2019.00692

  43. Loessner, M. J. (2005). Bacteriophage endolysins—Currentstate of research and applications. Current Opinionin Microbiology, 8(4), 480-487. DOI: 10.1016/j.mib.2005.06.002

  44. Love, M. J., Bhandari, D., Dobson, R. C. & Billington, C. (2018).Potential for bacteriophage endolysins to supplement orreplace antibiotics in food production and clinical care.Antibiotics, 7(1), 17. DOI: 10.3390/antibiotics7010017

  45. Low, L. Y., Yang, C., Perego, M., Osterman, A. & Liddington, R.C. (2005). Structure and lytic activity of a Bacillus anthracisprophage endolysin. Journal of Biological Chemistry,280(42), 35433-35439. DOI: 10.1074/jbc.M502723200

  46. Lukacik, P., Barnard, T. J., Keller, P. W., Chaturvedi, K.S., Seddiki, N., Fairman, J. W., Noinaj, N., Kirby, T.L., Henderson, J. P., Steven, A. C., Hinnebusch, B. J. &Buchanan, S. K. (2012a). Structural engineering of a phagelysin that targets Gram-negative pathogens. Proceedingsof the National Academy of Sciences, 109(25), 9857-9862.DOI: 10.1073/pnas.1203472109

  47. Lukacik, P., Barnard, T. J. & Buchanan, S. K. (2012b). Using abacteriocin structure to engineer a phage lysin that targetsYersinia pestis. Biochemical Society Transactions, 40 (6),1503–1506. DOI: 10.1042/BST20120209

  48. MacNair, C. R., Tsai, C. N. & Brown, E. D. (2020). Creativetargeting of the Gram‐negative outer membrane in antibioticdiscovery. Annals of the New York Academy of Sciences,1459(1), 69-85. DOI: 10.1111/nyas.14280

  49. Mahoney, A. R., Safaee, M. M., Wuest, W. M. & Furst, A. L.(2021). The silent pandemic: Emergent antibiotic resistancesfollowing the global response to SARS-CoV-2. IScience,24(4), 102304. DOI: 10.1016/j.isci.2021.102304

  50. Martínez-Anaya, C. & García-Guevara, J. F. (2014). Ingenieríade proteínas para el mejoramiento de enzimas. Recuperado16 de abril de 2023, de https://www.revista.unam.mx/vol.15/num12/art93/

  51. McNicholas, S., Potterton, E., Wilson, K. S. & Noble, M.E. M. (2011). Presenting your structures: The CCP4mgmolecular-graphics software. Acta CrystallographicaSection D Biological Crystallography, 67(4), 386-394.DOI: 10.1107/S0907444911007281

  52. Murray, E., Draper, L. A., Ross, R. P. & Hill, C. (2021). Theadvantages and challenges of using endolysins in a clinicalsetting. Viruses, 13(4), 680. DOI: 10.3390/v13040680

  53. Nelson, D. C., Schmelcher, M., Rodriguez-Rubio, L., Klumpp,J., Pritchard, D. G., Dong, S. & Donovan, D. M. (2012).Endolysins as antimicrobials. Advances in Virus Research,83, 299-365. DOI: 10.1016/B978-0-12-394438-2.00007-4

  54. Nguyen, H. M. & Kang, C. (2014). Lysis delay and burstshrinkage of coliphage T7 by deletion of terminator Tφreversed by deletion of early genes. Journal of Virology,88(4), 2107-2115. DOI: 10.1128/JVI.03274-13

  55. Oliveira, H., Pinto, G., Oliveira, A., Oliveira, C., Faustino,M. A., Briers, Y., Domingues, L. & Azeredo, J. (2016a).Characterization and genome sequencing of a Citrobacterfreundii phage CfP1 harboring a lysin active againstmultidrug-resistant isolates. Applied Microbiology andBiotechnology, 100, 10543-10553. DOI: 10.1007/s00253-016-7858-0

  56. Oliveira, H., Vilas Boas, D., Mesnage, S., Kluskens, L. D.,Lavigne, R., Sillankorva, S., Secundo, F. & Azeredo, J.(2016b). Structural and enzymatic characterization ofABgp46, a novel phage endolysin with broad anti-gramnegativebacterial activity. Frontiers in Microbiology, 7,208. DOI: 10.3389/fmicb.2016.00208

  57. Oliveira, H., São-José, C. & Azeredo, J. (2018). Phage-derivedpeptidoglycan degrading enzymes: Challenges and futureprospects for in vivo therapy. Viruses, 10(6), 292. DOI:10.3390/v10060292

  58. Paez-Espino, D., Eloe-Fadrosh, E. A., Pavlopoulos, G. A.,Thomas, A. D., Huntemann, M., Mikhailova, N., Rubin,E., Ivanova, N. N. & Kyrpides, N. C. (2016). UncoveringEarth’s virome. Nature, 536(7617), 425-430. DOI: 10.1038/nature19094

  59. Pagadala, N. S., Syed, K. & Tuszynski, J. (2017). Software formolecular docking: A review. Biophysical Reviews, 9(2),91-102. DOI: 10.1007/s12551-016-0247-1

  60. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S.,Greenblatt, D. M., Meng, E. C. & Ferrin, T. E. (2004). UCSFChimera: A visualization system for exploratory researchand analysis. Journal of Computational Chemistry, 25(13),1605-1612. DOI: 10.1002/jcc.20084

  61. Pohane, A. A. & Jain, V. (2015). Insights into the regulationof bacteriophage endolysin: Multiple means to the sameend. Microbiology, 161(Pt_12), 2269-2276. DOI: 10.1099/mic.0.000190

  62. Prada-Peñaranda, C., Holguín-Moreno, A. V., González-Barrios,A. F. & Vives-Flórez, M J. (2015). Fagoterapia, alternativapara el control de las infecciones bacterianas. Perspectivasen Colombia. Universitas Scientiarum, 20(1), 43-59. DOI:10.11144/Javeriana.SC20-1.faci

  63. Ragland, S. A. & Criss, A. K. (2017). From bacterial killingto immune modulation: Recent insights into the functionsof lysozyme. PLoS Pathogens, 13(9), e1006512. DOI:10.1371/journal.ppat.1006512

  64. Reina, J. & Reina, N. (2018). Fagoterapia ¿Una alternativa ala antibioticoterapia?. Revista Española de Quimioterapia,31(2), 101. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6159377/

  65. Roberts, K. D., Zhu, Y., Azad, M. A. K., Han, M.-L., Wang,J., Wang, L., Yu, H. H., Horne, A. S., Pinson, J.-A., Rudd,D., Voelcker, N. H., Patil, N. A., Zhao, J., Jiang, X., Lu,J., Chen, K., Lomovskaya, O., Hecker, S. J., Thompson,P. E., Nation, R. L., Dudley, M. N., Griffith, D.C., Velkov,T. & Li, J. (2022). A synthetic lipopeptide targeting topprioritymultidrug-resistant Gram-negative pathogens.Nature Communications, 13(1), 1625. DOI: 10.1038/s41467-022-29234-3

  66. Rosales, A. J. (2019). Los retos actuales en la ingenieríade proteínas. CIENCIA ergo-sum, Revista CientíficaMultidisciplinaria de Prospectiva, 26(3), 66. https://www.redalyc.org/journal/104/10459650011/movil/

  67. Roux, S., Brum, J. R., Dutilh, B. E., Sunagawa, S., Duhaime, M.B., Loy, A., Poulos, B. T., Solonenko, N., Lara, E., Poulain,J., Pesant, S., Kandels-Lewis, S., Dimier, C., Picheral, M.,Searson, S., Cruaud, C., Alberti, A., Duarte, C. M., Gasol,J. M., Vaqué, D., Coordinators, T. O., Bork, P., Acinas, S.G., Wincker, P. & Sullivan, M. B. (2016). Ecogenomicsand potential biogeochemical impacts of globally abundantocean viruses. Nature, 537(7622), 689-693. DOI: 10.1038/nature19366

  68. Rusic, D., Vilovic, M., Bukic, J., Leskur, D., Seselja Perisin,A., Kumric, M., Martinovic, D., Petric, A., Modun, D. &Bozic, J. (2021). Implications of COVID-19 pandemicon the emergence of antimicrobial resistance: Adjustingthe response to future outbreaks. Life, 11(3), 220. DOI:10.3390/life11030220

  69. Salmond, G. P. & Fineran, P. C. (2015). A century of the phage:Past, present and future. Nature Reviews Microbiology,13(12), 777-786. DOI: 10.1038/nrmicro3564

  70. São-José, C. (2018). Engineering of phage-derived lyticenzymes: Improving their potential as antimicrobials.Antibiotics, 7(2), 29. DOI: 10.3390/antibiotics7020029

  71. Shavrina, M. S., Zimin, A. A., Molochkov, N. V., Chernyshov,S. V., Machulin, A. V. & Mikoulinskaia, G. V. (2016). Invitro study of the antibacterial effect of the bacteriophageT5 thermostable endolysin on Escherichia coli cells.Journal of Applied Microbiology, 121(5), 1282-1290. DOI:10.1111/jam.13251

  72. Tamrakar, A., Singh, A. K., Chodhrary, M. & Kodgire, P.(2017). Fighting with Gram-negative enemy: Can outermembrane proteins aid in the rescue?. Chemical BiologyLetters, 4(1), 9-19. http://pubs.iscience.in/journal/index.php/cbl/article/view/551

  73. Terreni, M., Taccani, M. & Pregnolato, M. (2021). Newantibiotics for multidrug-resistant bacterial strains: Latestresearch developments and future perspectives. Molecules,26(9), 2671. DOI: 10.3390/molecules26092671

  74. Theuretzbacher, U., Bush, K., Harbarth, S., Paul, M., Rex, J. H.,Tacconelli, E. & Thwaites, G. E. (2020). Critical analysisof antibacterial agents in clinical development. NatureReviews Microbiology, 18(5), 286-298. DOI: 10.1038/s41579-020-0340-0

  75. Totté, J. E., van Doorn, M. B. & Pasmans, S. G. (2017).Successful treatment of chronic Staphylococcus aureusrelateddermatoses with the topical endolysin StaphefektSA. 100: A report of 3 cases. Case Reports in Dermatology,9(2), 19-25. DOI: 10.1159/000473872

  76. Traczewski, M. M., Ambler, J. E. & Schuch, R. (2021).Determination of MIC quality control parameters forexebacase, a novel lysin with antistaphylococcal activity.Journal of Clinical Microbiology, 59(7), e03117-20. DOI:10.1128/JCM.03117-20

  77. Trott, O. & Olson, A. J. (2009). AutoDock Vina: Improving the speedand accuracy of docking with a new scoring function, efficientoptimization, and multithreading. Journal of ComputationalChemistry, 31(2), 455-461. DOI: 10.1002/jcc.21334

  78. Vidová, B., Šramková, Z., Tišáková, L., Oravkinová, M. &Godány, A. (2014). Bioinformatics analysis of bacteriophageand prophage endolysin domains. Biologia, 69(5), 541-556.DOI: 10.2478/s11756-014-0358-8

  79. Webb, B. & Sali, A. (2016). Comparative protein structuremodeling using MODELLER. Current Protocols inBioinformatics, 54(1), 5-6. DOI: 10.1002/cpbi.3

  80. WHO, 2017. Publishes List of Bacteria for Which NewAntibiotics are Urgently Needed. Recuperado 16 de abrilde 2023 de: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibioticsare-urgently-needed

  81. WHO, 2020. Antibiotic resistance. Recuperado 16 de abrilde 2023 de: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance

  82. Xu, D., Zhao, S., Dou, J., Xu, X., Zhi, Y. & Wen, L. (2021).Engineered endolysin-based “Artilysins” for controllingthe Gram-negative pathogen Helicobacter pylori. AMBExpress, 11(1), 63. DOI: 10.1186/s13568-021-01222-8

  83. Yan, G., Liu, J., Ma, Q., Zhu, R., Guo, Z., Gao, C., Wang, S.,Yu, L., Gu, J., Hu, D., Han, W., Du, R., Yang, J. & Lei, L.(2017). The N-terminal and central domain of colicin Aenables phage lysin to lyse Escherichia coli extracellularly.Antonie van Leeuwenhoek, 110(12), 1627-1635. DOI:10.1007/s10482-017-0912-9

  84. Yang, H., Wang, M., Yu, J. & Wei, H. (2015). Antibacterial activityof a novel peptide-modified lysin against Acinetobacterbaumannii and Pseudomonas aeruginosa. Frontiers inMicrobiology, 6, 1471. DOI: 10.3389/fmicb.2015.01471

  85. Young, R. (2014). Phage lysis: Three steps, three choices, oneoutcome. Journal of Microbiology, 52, 243-258. DOI:10.1007/s12275-014-4087-z

  86. Yuan, S., Chan, H. S. & Hu, Z. (2017). Using PyMOLas a platform for computational drug design. WileyInterdisciplinary Reviews: Computational MolecularScience, 7(2), e1298. DOI: 10.1002/wcms.1298

  87. Yutin, N., Makarova, K. S., Gussow, A. B., Krupovic, M., Segall,A., Edwards, R. A. & Koonin, E. V. (2018). Discovery ofan expansive bacteriophage family that includes the mostabundant viruses from the human gut. Nature Microbiology,3(1), 38-46. DOI: 10.1038/s41564-017-0053-y

  88. Zampara, A., Sørensen, M. C. H., Grimon, D., Antenucci, F.,Briers, Y. & Brøndsted, L. (2018). Innolysins: A novelapproach to engineer endolysins to kill Gram-negativebacteria. BioRxiv., 408948. DOI: 10.1101/408948

  89. Zhang, Y. (2008). I-TASSER server for protein 3D structureprediction. BMC Bioinformatics, 9(1), 40. DOI:10.1186/1471-2105-9-40

  90. Zhang, M., Karra, S. & Gorski, W. (2014). Electrochemicalcoupled-enzyme assays at carbon nanotubes. AnalyticalChemistry, 86(18), 9330-9334. DOI: 10.1021/ac502687z




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2023;26