medigraphic.com
SPANISH

Revista Cubana de Plantas Medicinales

ISSN 1028-4796 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2022, Number 2

Next >>

Rev Cubana Plant Med 2022; 27 (2)

Effect of the essential oil of Lippia graveolens Kunth (mexican oregano) on Salmonella Typhimurium biofilm

Rubio OA, Álvarez PB, Travieso NMC, Martínez VA, Pino PO, Espinosa CI
Full text How to cite this article

Language: Spanish
References: 21
Page:
PDF size: 361.62 Kb.


Key words:

Lippia graveolens, essential oil, biofilm, Salmonella.

ABSTRACT

Introduction: The plants of Lippia graveolens Kunth (sin: L. berlandieri Schauer) have been used for therapeutic of respiratory and digestive conditions. The essential oil of plants grown in Cuba has a powerful antibacterial activity on Salmonella enterica.
Objective: The aim of study was evaluating the activity of the essential oil of Lippia graveolens Kunth plants grown in Cuba on Salmonella Typhimurium biofilm.
Methods: The inhibition effect of this essential oil on biofilm formation by Salmonella enterica subsp. enterica serovar Typhimurium strain ATCC 14028 was determined by biomass reduction with crystal violet, and the minimum biofilm inhibitory concentration (MBIC) was identified by plate counts. Swimming and swarming assays were used to evaluate the effect on motility structures. Also, the effects on preformed biofilms and minimum biofilm eradication concentration (MBEC) were determined.
Results: The essential oil of L. graveolens inhibits the formation of biofilms of S. Typhimurium and destroys preformed biofilms without generating persistent cells. MBIC values of the essential oil of L. graveolens coincided with those of MBEC at 0,5 mg/mL. Concentrations lower than MBIC, L. graveolens essences does not affect the bacterial swimming and swarming movements.
Conclusions: The study revealed the inhibitory effect of L. graveolens essential oil on S. Typhimurium biofilm, and it show a natural promising candidate for disinfection of this pathogen.


REFERENCES

  1. Rivero I, Duarte G, Navarrete A, Bye R, Linares E, Mata R. Chemical composition and antimicrobial and spasmolytic properties of Poliomintha longiflora and Lippia graveolens essential oils. J Food Sci. 2011;76(2):309-17. DOI: https://doi.org/10.1111/j.1750-3841.2010.02022.x

  2. Hernández AF, Antonio J, Herrera H, Medrano JI, Manuel L. Producción y extracción de aceite de orégano (Lippia graveolens Kunth) bajo cultivo en la comarca lagunera. Rev Mex Cien. 2011 [acceso: 06/08/2021];2(3). Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-11322011000100009

  3. Rubio Ortega A, Travieso Novelles M, Riverón Alemán Y, Peña Rodríguez J, Espinosa Castaño I, Pino Pérez O. Actividad antibacteriana de aceites esenciales de plantas cultivadas en Cuba sobre cepas de Salmonella enterica. Rev Salud Anim. 2018 [acceso: 06/08/2021];40(3):1-10. Disponible en: http://revistas.censa.edu.cu/index.php/RSA/article/view/998

  4. Rumbaugh KP, Sauer K. Biofilm dispersion. Nat Rev Microbiol. 2020. DOI: http://dx.doi.org/10.1038/s41579-020-0385-0

  5. Liu C, Sun D, Zhu J, Liu J, Liu W. The regulation of bacterial biofilm formation by cAMP-CRP: A mini-review. Front Microbiol. 2020;11:1-7. DOI: https://doi.org/10.3389/fmicb.2020.00802

  6. Rossi C, Chaves C, Serio A, Casaccia M, Maggio F, Paparella A. Effectiveness and mechanisms of essential oils for biofilm control on food-contact surfaces: An updated review. Crit Rev Food Sci Nutr. 2020;0(0):1-20. DOI: https://doi.org/10.1080/10408398.2020.1851169

  7. Vidal De Oliveira DC, Fernandes Júnior A, Kaneno R, Silva MG, Araújo Júnior JP, Cirone Silva NC, et al. Ability of Salmonella spp. to produce biofilm is dependent on temperature and surface material. Foodborne Pathog Dis. 2014;11(6). DOI: http://doi.org/10.1089/fpd.2013.1710

  8. Cadena M, Kelman T, Marco M, Pitesky M. Understanding antimicrobial resistance (AMR) profiles of Salmonella biofilm and planktonic bacteria challenged with disinfectants commonly used during poultry. Foods. 2019 [acceso: 14/08/2019];8(275). DOI: https://doi.org/10.3390/foods8070275

  9. Cruz CD, Shah S, Tammela P. Defining conditions for biofilm inhibition and eradication assays for Gram-positive clinical reference strains. BMC Microbiol. 2018;18(173):1-9. DOI: https://doi.org/10.1186/s12866-018-1321-6

  10. Benachour H, Ramdani M, Lograda T, Chalard P, Figueredo G. Chemical composition and antibacterial activities of Capparis spinosa essential oils from Algeria. Biodiversitas. 2020;21(1):161-9. DOI: https://doi.org/10.13057/biodiv/d210121

  11. Čabarkapa I, Čolović R, Đuragić O, Popović S, Milanov D, Pezo L. Anti-biofilm activities of essential oils rich in carvacrol and thymol against Salmonella Enteritidis. Biofouling. 2019;0(0):1-15. DOI: https://doi.org/10.1080/08927014.2019.1610169

  12. World Health Organization. Guidelines for drinking‑water quality: fourth edition incorporating the first addendum. WHO. 2017 [acceso: 06/08/2021]. Disponible en: https://apps.who.int/iris/handle/10665/254637

  13. García Heredia A, García S, Merino Mascorro JÁ, Feng P, Heredia N. Natural plant products inhibits growth and alters the swarming motility, biofilm formation, and expression of virulence genes in enteroaggregative and enterohemorrhagic Escherichia coli. Food Microbiol. 2016;59:124-32. DOI: http://dx.doi.org/10.1016/j.fm.2016.06.001

  14. Organización Mundial de la Salud. Guías para la calidad del agua de consumo humano. 4th ed. OMS. 2018 [acceso: 06/08/2021]. Disponible en: https://apps.who.int/iris/handle/10665/272403

  15. Singh A, Gupta R, Tandon S, Pandey R. Thyme oil reduces biofilm formation and impairs virulence of Xanthomonas oryzae. Front Microbiol. 2017;8(JUN):1-16. DOI: http://dx.doi.org/10.3389/fmicb.2017.01074

  16. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. InfoStat Grupo InfoStat. FCA, Universidad Nacional de Córdoba, Argentina.; 2018. Disponible en: https://www.infostat.com.ar

  17. World Health Organization. Cleaning and disinfection of environmental surfaces in the context of COVID-19. World Heal Organ. WHO. 2020 [acceso: 06/08/2021]. Disponible en: https://apps.who.int/iris/handle/10665/332096

  18. Chelvam KK, Chai LC, Thong KL. Variations in motility and biofilm formation of Salmonella enterica serovar Typhi. Gut Pathog. 2014;6(2):1-10. DOI: https://doi.org/10.1186/1757-4749-6-2

  19. Lee CK, Anda J De, Baker AE, Bennett RR, Luo Y, Lee EY. Multigenerational memory and adaptive adhesion in early bacterial biofilm communities. PNAS. 2018;115(17):4471-6. DOI: https://doi.org/10.1073/pnas.1720071115

  20. Olson ME, Ceri H, Morck DW, Buret AG, Read RR. Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res. 2002 [acceso: 06/08/2021];66:86-92. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC226988

  21. Sadekuzzaman M, Mizan FR, Kim H, Yang S, Ha S. Activity of thyme and tea tree essential oils against selected foodborne pathogens in biofilms on abiotic surfaces. LWT - Food Sci Technol. 2017. DOI: https://doi.org/10.1016/j.lwt.2017.10.042




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Plant Med. 2022;27