medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2023, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2023; 26 (1)

Emerging pollutants in Mexico: outlook, challenges and a possible biotechnological solution

Torres A, Rodríguez HA, Ayala M
Full text How to cite this article

Language: Spanish
References: 71
Page: 1-20
PDF size: 455.49 Kb.


Key words:

emerging contaminants, microcontaminants, bioremediation, enzyme biotechnology, redox enzymes.

ABSTRACT

The intensive consumption of different products results in an increase of waste generation, in detriment of the health of living beings. Particularly in the case of non-regulated substances, the so-called emerging contaminants (EC) or microcontaminants, the negative effect they produce is not yet completely understood. The EC are typically accumulated in water bodies in very low concentrations (down to ng/L) and are ingredients of everyday life products such as personal care products (shampoo, toothpaste, soap), pharmaceutical products (antibiotics, analgesics, hormones), laundry detergents, plasticizers, to mention a few. In this review, we analyze the current status of the EC in Mexico, regarding their presence, detection, removal efficiency in wastewater treatment plants as well as legislation. Also the potential of redox enzymes as a biotechnological alternative for degradation of EC is discussed.


REFERENCES

  1. Abdulrazaq, Y., Abdulsalam, A., Rotimi, A. L., Abdulbasit, A.A., Clifford, O., Abdulsalam, O. A., Racheal, O. N., Joy,A. A., Victor, F.O., Johannes, M., Bilal, M. & Umar, S.(2020). Classification, potential routes and risk of emergingpollutants/contaminant. En Nuro, A. (Ed). Emergingcontaminants. Intechopen. DOI:10.5772/intechopen.94447

  2. Alneyadi, A., Shah, I., AbuQamar, S. & Ashraf, S. (2017).Differential degradation and detoxification of an aromaticpollutant by two different peroxidases. Biomolecules, 7, 31. DOI: 10.3390/biom7010031

  3. Alneyadi, A. H., Rauf, M. A. & Ashraf, S. S. (2018).Oxidoreductases for the remediation of organic pollutants inwater - a critical review. Critical reviews in biotechnology,38,971–988. DOI: 10.1080/07388551.2017.1423275

  4. Auriol, M., Filali-Meknassi, Y., Adams, C. D. & Tyagi, R.D. (2006). Natural and synthetic hormone removal usingthe horseradish peroxidase enzyme: temperature and pHeffects. Water research, 40, 2847–2856. DOI: 10.1016/j.watres.2006.05.03

  5. Auriol, M., Filali-Meknassi, Y., Adams, C. D., Tyagi, R. D.,Noguerol, T. N. & Piña, B. (2008). Removal of estrogenicactivity of natural and synthetic hormones from a municipalwastewater: efficiency of horseradish peroxidase and laccasefrom Trametes versicolor.Chemosphere,70,445–452. DOI:10.1016/j.chemosphere.2007.06.064

  6. Avelar, M., Pastor, N., Ramírez, J. & Ayala, M. (2018).Replacement of oxidizable residues predicted by QM-MMsimulation of a fungal laccase generates variants with higheroperational stability. Journal of Inorganic Biochemistry,178, 125-122. DOI: 10.1016/j.jinorgbio.2017.10.007

  7. Ayala, M. (2010). Redox potential of heme peroxidases. EnTorres E. y Ayala M. (Ed). Biocatalysis based on hemeperoxidases (61-77). Springer-Verlag. DOI: 10.1007/978-3-642-12627-7_4

  8. Ayala, M. & Torres, E. (2016). Peroxidases as potentialindustrial biocatalysts. En Raven, E. y Dunford, B. (Eds).Heme Peroxidases. Industrial and Biomedical Applications(309-333). RSC Metallobiology Series. Royal Society ofChemistry. Cambridge. DOI: 10.1039/9781782622628-00309

  9. Baldrian, P. (2006). Fungal laccases – occurrence andproperties. FEMS Microbiology Reviews, 30, 215–242.DOI: 10.1111/j.1574-4976.2005.00010.x

  10. Barrios-Estrada, C., de Jesús Rostro-Alanis, M., Muñoz-Gutiérrez, B. D., Iqbal, H., Kannan, S. & Parra-Saldívar, R.(2018). Emergent contaminants: Endocrine disruptors andtheir laccase-assisted degradation - A review. The Scienceof the total environment, 612, 1516–1531. DOI: 10.1016/j.scitotenv.2017.09.013

  11. Bilal, M., Adeel, M., Rasheed, T., Zhao, Y. & Iqbal, H. M.N. (2019). Emerging contaminants of high concernand their enzyme-assisted biodegradation – A review.Environment International, 124, 336-353. DOI: 10.1016/j.envint.2019.01.011

  12. Bracamontes-Ruelas, A. R., Ordaz-Díaz, L. A., Bailón-Salas,A. M., Ríos-Saucedo, J. C., Reyes-Vidal, Y. & Reynoso-Cuevas, L. (2022). Emerging Pollutants inWastewater,Advanced Oxidation Processes as an Alternative Treatmentand Perspectives. Processes, 10, 1041. DOI: 10.3390/pr10051041

  13. Cabana, H., Jones, J. P. & Agathos, S. N. (2007). Elimination ofendocrine disrupting chemicals using white rot fungi andtheir lignin modifying enzymes: A review. Engineering inLife Sciences, 7, 429–456. DOI: 10.1002/elsc.200700017

  14. Cañas, A. I. & Camarero, S. (2010). Laccases and their naturalmediators: Biotechnological tools for sustainable ecofriendlyprocesses. Biotechnology Advances, 28, 694-705.DOI: 10.1016/j.biotechadv.2010.05.002

  15. Česen, M., Lenarčič, K., Mislej, V., Levstek, M., Kovačič, A.,Cimrmančič, B., Uranjek, N., Kosjek, T., Heath, D., Dolenc,M. S. & Heath, E. (2018). The occurrence and sourceidentification of bisphenol compounds in wastewaters.Science of the Total Environment, 616–617, 744–752. DOI:10.1016/j.scitotenv.2017.10.252

  16. Chiong, T., Lau, S. Y., Lek, Z. H., Koh, B.Y. & Danquah, M.K. (2016). Enzymatic treatment of methyl orange dye insynthetic wastewater by plant-based peroxidase enzymes.Journal of Environmental Chemical Engineering, 4,2500–2509. DOI: 10.1016/j.jece.2016.04.030

  17. Chrzanowski, Ł. & Ławniczak, Ł. (2020). Biodegradation ofconventional and emerging pollutants.Molecules, 25, 1186.DOI: 10.3390/molecules25051186

  18. Comisión Nacional del Agua (Conagua), México. (2019)Estadísticas del agua en México. p.104. https://sina.conagua.gob.mx/publicaciones/EAM_2019.pdf

  19. Cruz-Esteban, S., Cruz-López, L., A-Malo, E., Valle-Mora,J., Infante-Matha, D. M., Santiesteban-Hernández, A. &Bello-Mendoza, R. (2014). Presencia de anti-inflamatoriosno esteroideos en cuerpos de agua superficial de Tapachula,Chiapas, México. Revista AIDIS de Ingeniería y CienciasAmbientales. Investigación, desarrollo y práctica, 7,105-114. DOI: 10.22201/iingen.0718378xe.2014.7.2.46788

  20. Daughton, C. G. (2004). Non-regulated water contaminants:Emerging research. Environmental Impact AssessmentReview, 24, 711–732. DOI: 10.1016/j.eiar.2004.06.003

  21. Deblonde, T., Cossu-Leguille, C. & Hartemann, P. (2011).Emerging pollutants in wastewater: A review of the literature.International Journal of Hygiene and EnvironmentalHealth, 214, 442–448. DOI: 10.1016/j.ijheh.2011.08.002

  22. Díaz-Torres, E., Gibson, R., González-Farías, F., Zarco-Arista,A. E. & Mazari-Hiriart, M. (2013). Endocrine Disruptorsin the Xochimilco Wetland, Mexico City.Water, Air & SoilPollution, 224, 1586. DOI: 10.1007/s11270-013-1586-1

  23. Ding, H., Wu, Y., Zou, B., Lou, Q., Zhang, W., Zhong, J., Lu, L.& Dai, G. (2016). Simultaneous removal and degradationcharacteristics of sulfonamide, tetracycline, and quinoloneantibiotics by laccase-mediated oxidation coupled with soiladsorption. Journal of hazardous materials, 307, 350–358.DOI: 10.1016/j.jhazmat.2015.12.062

  24. EPA. (2008). Water quality criteria. Contaminants emergingconcern including pharmaceuticals and personal careproducts https://www.epa.gov/wqc/contaminantsemerging-concern-including-pharmaceuticals-andpersonal-care-products

  25. Estrada-Arriaga, E. B., Mijaylova-Nacheva, P., Moeller-Chavez,G., Mantilla-Morales, G., Ramírez-Salinas, N. & Sánchez-Zarza, M. (2013). Presencia y tratamiento de compuestosdisruptores endócrinos en aguas residuales de la Ciudadde México empleando un biorreactor con membranassumergidas. Ingeniería, investigación y tecnología, 14(2),275-284. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-77432013000200011&lng=es&tlng=es.

  26. Félix–Cañedo, T. E., Durán–Álvarez, J. C. & Jiménez–Cisneros,B. (2013). The occurrence and distribution of a group oforganic micropollutants in Mexico City’s water sources.Science of the total environment, 454-455, 109-118. DOI:10.1016/j.scitotenv.2013.02.088.

  27. García-Guevara, F., Avelar, M., Ayala, M. & Segovia, L. (2015).Computational tools applied to enzyme design: a review.Biocatalysis, 1, 109-117. DOI: 10.1515/boca-2015-0009

  28. Gavrilaș, S., Ursachi, C. Ș., Perța-Crișan, S. & Munteanu, F.D. (2022). Recent trends in biosensors for environmentalquality monitoring. Sensors (Basel). 22, 1513. DOI:10.3390/s22041513.

  29. Gavrilescu, M., Demnerová, K., Aamand, J., Agathos, S. &Fava, F. (2015). Emerging pollutants in the environment:present and future challenges in biomonitoring, ecologicalrisks and bioremediation. Nature Biotechnology, 32, 147-56. DOI: 10.1016/j.nbt.2014.01.001.

  30. Hawash, H. B., Moneer, A. A., Galhoum, A. A., Elgarahy,A. M., Mohamed, W. A. A., Samy, M., El-Seedi, H. R.,Gaballah, M. S., Mubarak, M. D. & Attia, N. F. (2023).Occurrence and spatial distribution of pharmaceuticals andpersonal care products (PPCPs) in the aquatic environment,their characteristics, and adopted legislations. Journal ofWater Process Engineering, 5, 103490. DOI: 10.1016/j.jwpe.2023.103490

  31. Inoue, S., Igarashi, Y., Yoneda, Y., Kawai, S., Okamura, H.& Nishida, T. (2015). Elimination and detoxificationof fungicide miconazole and antidepressant sertralineby manganese peroxidase-dependent lipid peroxidationsystem. International Journal of Biodeteriorationand Biodegradation, 100, 79–84. DOI: 10.1016/j.ibiod.2015.02.017

  32. Jacobo-Marín, D. & Santacruz de León, G. (2021). Contaminantesemergentes en el agua: Regulación en México, principioprecautorio y perspectiva comparada. Revista deDerecho Ambiental, 1:15, pp. 51-75. DOI:10.5354/0719-4633.2021.57414

  33. Jones, S. M. & Solomon, E. I. (2015). Electron transfer andreaction mechanism of laccases. Cellular and Molecular LifeSciences, 72, 869–883. DOI: 10.1007/s00018-014-1826-6

  34. Karich, A., Ullrich, R., Scheibner, K. & Hofrichter, M. (2017).Fungal unspecific peroxygenases oxidize the majority oforganic EPA priority pollutants. Frontiers in Microbiology,8(AUG). DOI: 10.3389/fmicb.2017.01463

  35. Lassouane, F., Aït-Amar, H., Amrani, S. & Rodriguez-Couto, S. (2019). A promising laccase immobilizationapproach for bisphenol A removal from aqueoussolutions. Bioresource technology, 271, 360–367. DOI:10.1016/j.biortech.2018.09.129

  36. Li, J., Peng, J., Zhang, Y., Ji, Y., Shi, H., Mao, L. & Gao, S.(2016). Removal of triclosan via peroxidases-mediatedreactions in water: Reaction kinetics, products anddetoxification. Journal of hazardous materials, 310,152–160. DOI: 10.1016/j.jhazmat.2016.02.037

  37. Lloret, L., Eibes, G., Lú-Chau, T.A., Moreira, M.T., Feijoo, G. &Lema, J. M. (2010). Laccase catalyzed degradation of antiinflammatoriesand estrogens. Biochemical EngineeringJournal, 51, 124–131. DOI: 10.1016/j.bej.2010.06.005

  38. Lu, Y. M., Yang, Q.Y., Wang, L. M., Zhang, M. Z., Guo, W.Q., Cai, Z. N. & Chen, Y. (2017). Enhanced activity ofimmobilized horseradish peroxidase by carbon nanospheresfor phenols removal. CLEAN–Soil, Air, Water, 45, 1600077.DOI: 10.1002/clen.201600077

  39. Majeau, J. A., Brar, S. K. & Tyagi, R. D. (2010). Laccasesfor removal of recalcitrant and emerging pollutants.Bioresource Technology, 101, 2331–2350. DOI: 10.1016/j.biortech.2009.10.087

  40. Mashhadi, N., Taylor, K. E., Biswas, N., Meister, P. & Gauld,J. W. (2019a). Oligomerization of 3-substituted quinolinesby catalytic activity of soybean peroxidase as a wastewatertreatment. Product formation and computational studies.Chemical Engineering Journal, 364, 340-348. DOI:10.1016/j.cej.2019.01.184

  41. Mashhadi, N., Taylor, K. E., Jimenez, N., Varghese, S. T.,Levi, Y., Lonergan, C. & Biswas, N. (2019b). Removal ofselected pharmaceuticals and personal care products fromwastewater using soybean peroxidase. Environmentalmanagement, 63, 408-415. DOI: 10.1007/s00267-018-01132-9

  42. Mazloum, S., Al-Ansari, M. M., Taylor, K., Bewtra, J. K. &Biswas, N. (2016). Additive effect on soybean peroxidasecatalyzedremoval of anilines from water. Environmentalengineering science, 33, 133–139. DOI: 10.1089/ees.2015.0383

  43. Morozova, O. V, Shumakovich, G. P., Gorbacheva, M. A.,Shleev, S. V. & Yaropolov, A. I. (2007a). Blue Laccases,Biochemistry (Mosc), 72, 1136-1150 DOI: 10.1134/s0006297907100112

  44. Morozova, O. V, Shumakovich, G. P., Shleev, S. V., & Yaropolov, A.I. (2007b) Laccase–mediator systems and their applications:a review. Applied Biochemistry and Microbiology, 43, 523-535. DOI: 10.1134/S0003683807050055

  45. Morsi, R., Bilal, M., Iqbal, H. & Ashraf, S. S. (2020). Laccases andperoxidases: The smart, greener and futuristic biocatalytictools to mitigate recalcitrant emerging pollutants. Scienceof the total environment, 714, 136572. DOI: 10.1016/j.scitotenv.2020.136572

  46. Naghdi, M., Taheran, M., Brar, S. K., Kermanshahi-pour, A.,Verma, M. & Surampalli, R. Y. (2018). Biotransformationof carbamazepine by laccase-mediator system: kinetics,by-products and toxicity assessment. Process Biochemistry,67, 147-154. DOI: 10.1016/j.procbio.2018.02.009

  47. Peña-Álvarez, A. & Castillo-Alanís, A. (2015). Identificacióny cuantificación de contaminantes emergentes en aguasresiduales por microextracción en fase sólida-cromatografíade gases-espectrometría de masas (MEFS-CG-EM). TIPRevista Especializada en Ciencias Químico-Biológicas,18,29-42. Recuperado en 14 de noviembre de 2021, dehttps://www.scielo.org.mx/scielo.php?pid=S1405-888X2015000100003&script=sci_abstract

  48. Peña-Guzmán, C., Ulloa-Sánchez, S., Mora, K., Helena-Bustos,R., Lopez-Barrera, E., Alvarez, J. & Rodriguez-Pinzón, M.(2019). Emerging pollutants in the urban water cycle inLatin America: A review of the current literature. Journal ofEnvironmental Management,237, 408-423.DOI: 10.1016/j.jenvman.2019.02.100

  49. Ramírez-Cavazos, L. I., Junghanns, C., Ornelas-Soto, N.,Cárdenas-Chávez, D. L., Hernández Luna, C., Demarche,P. & Parra, R. (2014). Purification and characterization oftwo thermostable laccases from Pycnoporus sanguineusand potential role in degradation of endocrine disruptingchemicals. Journal of Molecular Catalysis B: Enzymatic,108, 32-42. DOI: 10.1016/j.molcatb.2014.06.006

  50. Rathi, B. S., Kumar, P. S. & Show, P. (2021). A review on effectiveremoval of emerging contaminants from aquatic systems:Current trends and scope for further research. Journalof hazardous materials, 409, 124413. DOI: 10.1016/j.jhazmat.2020.124413

  51. Rathner, R., Petz, S., Tasnádi, G., Koller, M. & Ribitsch, V.(2017). Monitoring the kinetics of biocatalytic removal ofthe endocrine disrupting compound 17α-ethinylestradiolfrom differently polluted wastewater bodies. Journal ofEnvironmental Chemical Engineering,5, 1920–1926. DOI:10.1016/j.jece.2017.03.034

  52. Rebollar-Pérez G., Campos-Terán, J., Ornelas-Soto, N.,Méndez-Albores, A. & Torres, E. (2015). Biosensorsbased on oxidative enzymes for detection of environmentalpollutants. Biocatalysis, 1, 118–129. DOI 10.1515/boca-2015-0010

  53. Richardson, S. D., Plewa, M.J., Wagner, E. D., Schoeny, R.& DeMarini, D. M. (2007) Occurrence, genotoxicity, andcarcinogenicity of regulated and emerging disinfectionby-products in drinking water: A review and roadmapfor research. Mutation Research/Reviews in MutationResearch, 636, 178–242.DOI: 10.1016/j.mrrev.2007.09.001

  54. Rivera-Jaimes, J. A., Postigo, C., Melgoza-Alemán, R. M.,Aceña, J., Barceló, D. & López de Alda, M. (2018).Study of pharmaceuticals in surface and wastewaterfrom Cuernavaca, Morelos, Mexico: Occurrence andenvironmental risk assessment. Science of the totalenvironment, 613-614, 1263–1274. DOI: 10.1016/j.scitotenv.2017.09.134

  55. Robledo-Zacarías, V. H., Velázquez-Machuca, M. A., Montañez-Soto, J. L., Pimentel Equihua, J. L., Vallejo Cardona, A.A., López Calvillo, M. D. & Venegas González, J. (2017).Hidroquímica y contaminantes emergentes en aguasresiduales urbano-industriales de Morelia, Michoacán,México. Revista internacional de contaminaciónambiental,33, 221-235. DOI: 10.20937/rica.2017.33.02.04

  56. Rocha-Gutierrez, B. A. & Lee, W. Y. (2013). Investigation ofpolybrominated diphenyl ethers in wastewater treatmentplants along the US and Mexico border: A trans-boundarystudy.Water, Air, & Soil Pollution,224, 1-13. DOI: 10.1007/s11270-012-1398-8

  57. Rocha-Gutiérrez, B. A., Peralta-Pérez, M. D. R. & Zavala-Díaz dela Serna, F. J. (2015). Revisión global de los contaminantesemergentes PBDE y el caso particular de México. Revistainternacional de contaminación ambiental, 31, 311-320.Recuperado en 23 de septiembre de 2021, de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-49992015000300010&lng=es&tlng=es

  58. Ronderos-Lara, J., Saldarriaga-Noreña, H., Murillo-Tovar, M.& Vergara-Sánchez, J. (2018). Optimization and applicationof a GC-MS method for the determination of endocrinedisruptor compounds in natural water. Separations, 5, 33.DOI: 10.3390/separations5020033

  59. Ruiz-Dueñas, F. & Martínez, A. (2010). Structural and functionalfeatures of peroxidases with a potential as industrialbiocatalysts. En Torres, E. y Ayala, M (Eds). Biocatalysisbased on heme peroxidases (37-59). Springer-Verlag. DOI:10.1007/978-3-642-12627-7_3

  60. Sun, K., Li, S., Yu, J., Gong, R., Si, Y., Liu, X. & Chu, G. (2019).Cu2+-assisted laccase from Trametes versicolor enhancedself-polyreaction of triclosan. Chemosphere, 225, 745–754.DOI: 10.1016/j.chemosphere.2019.03.079

  61. Valderrama, B., Ayala, M. & Vazquez-Duhalt, R. (2002). Suicideinactivation of peroxidases and the challenge of engineeringmore robust enzymes. Chemistry and Biology, 9, 555-565.DOI: 10.1016/s1074-5521(02)00149-7

  62. Varga, B., Somoyogi, V., Meiczinger, M., Kováts, N. &Domokos, E. (2019). Enzymatic treatment and subsequenttoxicity of organic micropollutants using oxidoreductases- areview. Journal of cleaner production, 221, 306-322. DOI:10.1016/j.jclepro.2019.02.135.

  63. Wang, Y., Lan, D., Durrani, R. & Hollmann, F. (2017).Peroxygenases en route to becoming dream catalysts.What are the opportunities and challenges? CurrentOpinion in Chemical Biology, 37, 1-9. DOI: 10.1016/j.cbpa.2016.10.007

  64. Wen, X., Jia, Y. & Li, J. (2009). Degradation of tetracyclineand oxytetracycline by crude lignin peroxidase preparedfrom Phanerochaete chrysosporium--a white rotfungus. Chemosphere, 75, 1003-1007. DOI: 10.1016/j.chemosphere.2009.01.052

  65. Wen, X., Jia, Y.& Li, J. (2010). Enzymatic degradationof tetracycline and oxytetracycline by crudemanganese peroxidase prepared from Phanerochaetechrysosporium. Journal of hazardous materials, 177,924–928. DOI: 10.1016/j.jhazmat.2010.01.005

  66. Wilkinson J, Hooda, P. S., Barker, J., Barton, S. & Swinden, J.(2017). Occurrence, fate and transformation of emergingcontaminants in water: An overarching review of the field.Environmental Pollution, 231, 954-970. DOI: 10.1016/j.envpol.2017.08.032

  67. Xu, H., Guo, M. Y., Gao, Y. H., Bai, X. H. & Zhou, X. W. (2017).Expression and characteristics of manganese peroxidasefrom Ganoderma lucidum in Pichia pastoris and itsapplication in the degradation of four dyes and phenol.BMCbiotechnology, 17, 19. DOI: 10.1186/s12896-017-0338-5

  68. Yoshida, H. (1883). LXIII. Chemistry of lacquer (Urushi). PartI. Communication from the Chemical Society of Tokio.Journal of the Chemical Society, Transactions, 43, 472-486. DOI: 10.1039/CT8834300472

  69. Younas, F., Bibi, I., Hussain, M. M., Niazi. N. K. (2023).Emerging environmental pollutants: current and futurechallenges. En Chowdhary, P., Kumar, V., Kumar, S.,Hare, V. (Eds). Environmental challenges technologies:challenges and opportunities. CRC Press. DOI:10.1201/9781003239956-2.

  70. Younes, S. B., Khedher, S. B., Zhang, Y., Geissen, S. U. &Sayadi, S. (2019). Laccase from Scytalidium thermophilum:production improvement, catalytic behavior and detoxifyingability of diclofenac. Catalysis Letter, 149, 1833–1844.DOI: 10.1007/s10562-019-02771-1

  71. Zhang, Y. & Geissen, S. U. (2010). In vitro degradationof carbamazepine and diclofenac by crude ligninperoxidase. Journal of hazardous materials, 176, 1089–1092. DOI: 10.1016/j.jhazmat.2009.10.133




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2023;26