medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2023, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2023; 26 (1)

Role of hydrogen peroxide (H2O2) as a redox signaling molecule and in the diabetes mellitus-related oxidative stress

Ulloa M, Macías F, Martínez EG, Arnold E
Full text How to cite this article

Language: Spanish
References: 114
Page: 1-14
PDF size: 444.43 Kb.


Key words:

hydrogen peroxide, reactive oxygen species, redox signaling, Diabetes, oxidative stress.

ABSTRACT

Cellular metabolism is a constant source of reactive oxygen species (ROS). The production of hydrogen peroxide (H2O2) is particularly relevant, due to its role in cellular physiology. H2O2 can act as a classical intracellular signaling molecule in several processes like cell proliferation, hormone synthesis and secretion, immune cell regulation, angiogenesis, and apoptosis. However, H2O2 overproduction and accumulation, derived from increased mitochondrial electron transport chain activity, glucose autoxidation, and increased polyol flux, contribute to an imbalance in the redox state of the cells. High concentration of H2O2 induces cellular dysfunction through oxidation of macromolecules like proteins, lipids, carbohydrates and nucleic acids. H2O2-induced oxidative damage can contribute to the development and progression of degenerative diseases such as diabetes mellitus. Indeed, chronic hyperglycemia has been shown to cause an increased H2O2 concentration and oxidative damage that contribute to the pathogenesis and progression of diabetes complications.


REFERENCES

  1. Adeshara, K. A., Bangar, N., Diwan, A. G. & Tupe, R. S.(2022). Plasma glycation adducts and various RAGEisoforms are intricately associated with oxidative stressand inflammatory markers in type 2 diabetes patients withvascular complications. Diabetes & Metabolic Syndrome:Clinical Research & Reviews, 16(3), 102441. DOI:10.1016/j.dsx.2022.102441

  2. Al-Gubory, K. H. (2014). Environmental pollutants andlifestyle factors induce oxidative stress and poor prenataldevelopment. Reproductive BioMedicine Online, 29(1),17–31. DOI: 10.1016/j.rbmo.2014.03.002

  3. Angoa-Pérez, M. & Rivas-Arancibia, S. (2007). Estrés oxidativoy neurodegeneración: ¿causa o consecuencia? Archivos deNeurociencia, 12(1), 45–54.

  4. Asayama, K., Yokota, S. & Kato, K. (1991). Peroxisomaloxidases in various tissues of diabetic rats. DiabetesResearch and Clinical Practice, 11(2), 89–94. DOI:10.1016/0168-8227(91)90096-v.

  5. Bae, Y. S., Kang, S. W., Seo, M. S., Baines, I. C., Tekle, E.,Chock, P. B. & Rhee, S. G. (1997). Epidermal growth factor(EGF)-induced generation of hydrogen peroxide. Role inEGF receptor-mediated tyrosine phosphorylation. TheJournal of Biological Chemistry, 272(1), 217–221. DOI:10.1074/jbc.272.1.217.

  6. Bae, Y. S., Sung, J. Y., Kim, O. S., Kim, Y. J., Hur, K. C.,Kazlauskas, A. & Rhee, S. G. (2000). Platelet-derivedgrowth factor-induced H2O2 production requires theactivation of phosphatidylinositol 3-kinase. The Journalof Biological Chemistry, 275(14), 10527–10531. DOI:10.1074/jbc.275.14.10527.

  7. Basuroy, S., Tcheranova, D., Bhattacharya, S., Leffler, C. W.& Parfenova, H. (2011). Nox4 NADPH oxidase-derivedreactive oxygen species, via endogenous carbon monoxide,promote survival of brain endothelial cells during TNF-α-induced apoptosis. American Journal of Physiology.Cell Physiology, 300(2), C256-265. DOI: 10.1152/ajpcell.00272.2010.

  8. Berlett, B. S. & Stadtman, E. R. (1997). Protein oxidationin aging, disease, and oxidative stress. The Journal ofBiological Chemistry, 272(33), 20313–20316. DOI:10.1074/jbc.272.33.20313.

  9. Bienert, G. P., Møller, A. L. B., Kristiansen, K. A., Schulz, A.,Møller, I. M., Schjoerring, J. K. & Jahn, T. P. (2007). Specificaquaporins facilitate the diffusion of hydrogen peroxideacross membranes. The Journal of Biological Chemistry,282(2), 1183–1192. DOI: 10.1074/jbc.M603761200.

  10. Bigagli, E. & Lodovici, M. (2019). Circulating Oxidative StressBiomarkers in Clinical Studies on Type 2 Diabetes and ItsComplications. Oxidative Medicine and Cellular Longevity,2019, 1-17. DOI: 10.1155/2019/5953685.

  11. Block, G., Dietrich, M., Norkus, E. P., Morrow, J. D., Hudes,M., Caan, B. & Packer, L. (2002). Factors Associatedwith Oxidative Stress in Human Populations. AmericanJournal of Epidemiology, 156(3), 274–285. DOI: 10.1093/aje/kwf029.

  12. Bondy, S. C. & Naderi, S. (1994). Contribution of hepaticcytochrome P450 systems to the generation of reactiveoxygen species. Biochemical Pharmacology, 48(1),155–159. DOI: 10.1016/0006-2952(94)90235-6.

  13. Bossis, G. & Melchior, F. (2006). Regulation of SUMOylationby reversible oxidation of SUMO conjugating enzymes.Molecular Cell, 21(3), 349–357. DOI: 10.1016/j.molcel.2005.12.019.

  14. Boveris, A., Oshino, N. & Chance, B. (1972). The cellularproduction of hydrogen peroxide. Biochem. J., 128,617–630. DOI: 10.1042/bj1280617.

  15. Cai, W., Torreggiani, M., Zhu, L., Chen, X., He, J. C., Striker,G. E. & Vlassara, H. (2010). AGER1 regulates endothelialcell NADPH oxidase-dependent oxidant stress via PKCdelta:implications for vascular disease. American Journalof Physiology Cell Physiology, 298(3), C624-634. DOI:10.1152/ajpcell.00463.2009.

  16. Caldini, R., Chevanne, M., Mocali, A., Tombaccini, D. & Paoletti,F. (1998). Premature induction of aging in sublethallyH2O2-treated young MRC5 fibroblasts correlates withincreased glutathione peroxidase levels and resistance toDNA breakage. Mechanisms of Ageing and Development,105(1–2), 137–150. DOI: 10.1016/s0047-6374(98)00085-2.

  17. Cao, C., Leng, Y. & Kufe, D. (2003a). Catalase activityis regulated by c-Abl and Arg in the oxidative stressresponse. The Journal of Biological Chemistry, 278(32),29667–29675. DOI: 10.1074/jbc.M301292200.

  18. Cao, C., Leng, Y., Liu, X., Yi, Y., Li, P. & Kufe, D. (2003b).Catalase is regulated by ubiquitination and proteosomaldegradation. Role of the c-Abl and Arg tyrosine kinases.Biochemistry, 42(35), 10348–10353. DOI: 10.1021/bi035023f.

  19. Chen, J., Jing, J., Yu, S., Song, M., Tan, H., Cui, B. & Huang, L.(2016). Advanced glycation endproducts induce apoptosisof endothelial progenitor cells by activating receptor RAGEand NADPH oxidase/JNK signaling axis. American Journalof Translational Research, 8(5), 2169–2178.

  20. Cook-Mills, J. M. (2006). Hydrogen peroxide activation ofendothelial cell-associated MMPs during VCAM-1-dependent leukocyte migration. Cellular and MolecularBiology (Noisy-Le-Grand, France), 52(4), 8–16.

  21. de Piña, M. Z., Vázquez-Meza, H., Pardo, J. P., Rendón, J. L.,Villalobos-Molina, R., Riveros-Rosas, H. & Piña, E. (2008).Signaling the signal, cyclic AMP-dependent protein kinaseinhibition by insulin-formed H2O2 and reactivation bythioredoxin. The Journal of Biological Chemistry, 283(18),12373–12386. DOI: 10.1074/jbc.M706832200.

  22. Dee Harrison-Findik, D. & Lu, S. (2015). The Effect of Alcoholand Hydrogen Peroxide on Liver Hepcidin Gene Expressionin Mice Lacking Antioxidant Enzymes, GlutathionePeroxidase-1 or Catalase. Biomolecules, 5, 793–807. DOI:10.3390/biom5020793.

  23. Desaint, S., Luriau, S., Aude, J.-C., Rousselet, G. & Toledano,M. B. (2004). Mammalian antioxidant defenses are notinducible by H2O2. The Journal of Biological Chemistry,279(30), 31157–31163. DOI: 10.1074/jbc.M401888200.

  24. Diamond-Stanic, M. K., Marchionne, E. M., Teachey, M.K., Durazo, D. E., Kim, J. S. & Henriksen, E. J. (2011).Critical role of the transient activation of p38 MAPK inthe etiology of skeletal muscle insulin resistance inducedby low-level in vitro oxidant stress. Biochemical andBiophysical Research Communications, 405(3), 439–444.DOI: 10.1016/j.bbrc.2011.01.049

  25. Dokken, B. B., Saengsirisuwan, V., Kim, J. S., Teachey, M. K.& Henriksen, E. J. (2008). Oxidative stress-induced insulinresistance in rat skeletal muscle: role of glycogen synthasekinase-3. American Journal of Physiology-Endocrinologyand Metabolism, 294(3), E615–E621. DOI: 10.1152/ajpendo.00578.2007.

  26. Duan, J., Duan, J., Zhang, Z. & Tong, T. (2005). Irreversiblecellular senescence induced by prolonged exposure to H2O2involves DNA-damage-and-repair genes and telomereshortening. The International Journal of Biochemistry& Cell Biology, 37(7), 1407–1420. DOI: 10.1016/j.biocel.2005.01.010.

  27. Ellis, E. A., Guberski, D. L., Somogyi-Mann, M. & Grant, M. B.(2000). Increased H2O2, vascular endothelial growth factorand receptors in the retina of the BBZ/WOR diabetic rat.Free Radical Biology and Medicine, 28(1), 91–101. DOI:10.1016/S0891-5849(99)00216-6.

  28. Elsner, M., Gehrmann, W. & Lenzen, S. (2011). Peroxisomegeneratedhydrogen peroxide as important mediator oflipotoxicity in insulin-producing cells. Diabetes, 60(1),200-208. DOI: 10.2337/db09-1401.M.E.

  29. Feldman, E. L., Callaghan, B. C., Pop-Busui, R., Zochodne,D. W., Wright, D. E., Bennett, D. L., Bril, V., Russell, J.W. & Viswanathan, V. (2019). Diabetic neuropathy. NatureReviews. Disease Primers, 5(1), 42. DOI: 10.1038/s41572-019-0097-9.

  30. Frand, A. R. & Kaiser, C. A. (1999). Ero1p oxidizes proteindisulfide isomerase in a pathway for disulfide bondformation in the endoplasmic reticulum. Molecular Cell,4(4), 469–477. DOI: 10.1016/s1097-2765(00)80198-7.

  31. Gianturco, V., Bellomo, A., D’Ottavio, E., Formosa, V., Iori,A., Mancinella, M., Troisi, G. & Marigliano, V. (2009).Impact of therapy with α-lipoic acid (ALA) on theoxidative stress in the controlled niddm: a possiblepreventive way against the organ dysfunction? Archives ofGerontology and Geriatrics, 49, 129–133. DOI: 10.1016/j.archger.2009.09.022.

  32. Gillani, S. W., Azeem, E., Siddiqui, A., Mian, R. I., Poh, V.,Sulaiman, S. A. S. & Baig, M. R. (2016). Oxidative StressCorrelates (OSC) in Diabetes Mellitus Patients. CurrentDiabetes Reviews, 12(3), 279–284. DOI: 10.2174/1573399811666150520094631.

  33. Giorgio, M., Migliaccio, E., Orsini, F., Paolucci, D., Moroni, M.,Contursi, C., Pelliccia, G., Luzi, L., Minucci, S., Marcaccio,M., Pinton, P., Rizzuto, R., Bernardi, P., Paolucci, F. &Pelicci, P. G. (2005). Electron transfer between cytochromec and p66Shc generates reactive oxygen species that triggermitochondrial apoptosis. Cell, 122(2), 221–233. DOI:10.1016/j.cell.2005.05.011.

  34. Giulivi, C., Boveris, A. & Cadenas, E. (1995). Hydroxyl radicalgeneration during mitochondrial electron transfer and theformation of 8-hydroxydesoxyguanosine in mitochondrialDNA. Archives of Biochemistry and Biophysics, 316(2),909–916. DOI: 10.1006/abbi.1995.1122

  35. Golbidi, S. S., Ebadi, A. & Laher, I. (2011). Antioxidants inthe treatment of diabetes. Current Diabetes Reviews, 7(2),106–125. DOI: 10.2174/157339911794940729.

  36. Gregory, E. M., Yost, F. J. J. & Fridovich, I. (1973). Superoxidedismutases of Escherichia coli: intracellular localizationand functions. Journal of Bacteriology, 115(3), 987–991.DOI: 10.1128/jb.115.3.987-991.1973.

  37. Gross, E., Sevier, C. S., Heldman, N., Vitu, E., Bentzur, M.,Kaiser, C. A., Thorpe, C. & Fass, D. (2006). Generatingdisulfides enzymatically: reaction products and electronacceptors of the endoplasmic reticulum thiol oxidase Ero1p.Proceedings of the National Academy of Sciences of theUnited States of America, 103(2), 299–304. DOI: 10.1073/pnas.0506448103.

  38. Halliwell, B., Adhikary, A., Dingfelder, M. & Dizdaroglu, M.(2021). Hydroxyl radical is a significant player in oxidativeDNA damage in vivo. Chemical Society Reviews, 50(15),8355–8360. DOI: 10.1039/d1cs00044f.

  39. Henriksen, E. J., Diamond-Stanic, M. K. & Marchionne, E. M.(2011). Oxidative stress and the etiology of insulin resistanceand type 2 diabetes. Free Radical Biology & Medicine, 51(5),993–999. DOI: 10.1016/j.freeradbiomed.2010.12.005.

  40. Inoguchi, T., Li, P., Umeda, F., Yu, H. Y., Kakimoto, M.,Imamura, M., Aoki, T., Etoh, T., Hashimoto, T., Naruse, M.,Sano, H., Utsumi, H. & Nawata, H. (2000). High glucoselevel and free fatty acid stimulate reactive oxygen speciesproduction through protein kinase C-dependent activationof NAD(P)H oxidase in cultured vascular cells. Diabetes,49(11), 1939–1945. DOI: 10.2337/diabetes.49.11.1939.

  41. Iwakami, S., Misu, H., Takeda, T., Sugimori, M., Matsugo,S., Kaneko, S. & Takamura, T. (2011). Concentration-Dependent Dual Effects of Hydrogen Peroxide on InsulinSignal Transduction in H4IIEC Hepatocytes. PLoS ONE,6(11), 2–11. DOI: 10.1371/journal.pone.0027401.

  42. Jeong, S.-R., Park, H.-Y., Kim, Y. & Lee, K.-W. (2020).Methylglyoxal-derived advanced glycation end productsinduce matrix metalloproteinases through activation ofERK/JNK/NF-κB pathway in kidney proximal epithelialcells. Food Science and Biotechnology, 29(5), 675–682.DOI: 10.1007/s10068-019-00704-7.

  43. Juarez, J. C., Manuia, M., Burnett, M. E., Betancourt, O., Boivin,B., Shaw, D. E., Tonks, N. K. Mazar, A. P. & Doñate, F.(2008). Superoxide dismutase 1 (SOD1) is essential forH2O2-mediated oxidation and inactivation of phosphatasesin growth factor signaling. Proceedings of the NationalAcademy of Sciences of the United States of America,105(20), 7147–7152. DOI: 10.1073/pnas.0709451105.

  44. Jung, S.-N., Yang, W. K., Kim, J., Kim, H. S., Kim, E. J., Yun,H., Park, H., Soo, K., Choe, W., Kang, I. & Ha, J. (2008).Reactive oxygen species stabilize hypoxia-induciblefactor-1 alpha protein and stimulate transcriptionalactivity via AMP-activated protein kinase in DU145 humanprostate cancer cells. Carcinogenesis, 29(4), 713–721. DOI:10.1093/carcin/bgn032.

  45. Kamata, H., Honda, S.-I., Maeda, S., Chang, L., Hirata, H.& Karin, M. (2005). Reactive oxygen species promoteTNFalpha-induced death and sustained JNK activation byinhibiting MAP kinase phosphatases. Cell, 120(5), 649–661.DOI: 10.1016/j.cell.2004.12.041.

  46. Kim, J. S., Saengsirisuwan, V., Sloniger, J. A., Teachey, M.K. & Henriksen, E. J. (2006). Oxidant stress and skeletalmuscle glucose transport: Roles of insulin signaling andp38 MAPK. Free Radical Biology and Medicine, 41(5),818–824. DOI: 10.1016/j.freeradbiomed.2006.05.031

  47. Kim, Y. M., Kim, S.-J., Tatsunami, R., Yamamura, H.,Fukai, T. & Ushio-Fukai, M. (2017). ROS-induced ROSrelease orchestrated by Nox4, Nox2, and mitochondria inVEGF signaling and angiogenesis. American Journal ofPhysiology. Cell Physiology, 312(6), C749–C764. DOI:10.1152/ajpcell.00346.2016.

  48. Konno, T., Melo, E. P., Chambers, J. E. & Avezov, E. (2021).Intracellular Sources of ROS/H2O2 in Health andNeurodegeneration: Spotlight on Endoplasmic Reticulum.Cells, 10(2), 233–258. DOI: 10.3390/cells10020233.

  49. Lacy, M. E., Moran, C., Gilsanz, P., Beeri, M. S., Karter, A. J. &Whitmer, R. A. (2022). Comparison of cognitive functionin older adults with type 1 diabetes, type 2 diabetes, and nodiabetes: results from the Study of Longevity in Diabetes(SOLID). BMJ Open Diabetes Research and Care, 10(2),e002557. DOI: 10.1136/bmjdrc-2021-002557.

  50. Laporte, A., Lortz, S., Schaal, C., Lenzen, S. & Elsner, M. (2020).Hydrogen peroxide permeability of cellular membranesin insulin-producing cells. Biochimica et BiophysicaActa. Biomembranes, 1862(2), 183096. DOI: 10.1016/j.bbamem.2019.183096.

  51. Lee, J. N., Dutta, R. K., Maharjan, Y., Liu, Z.-Q., Lim, J.-Y.,Kim, S.-J., Cho, D. H., So, H. S., Choe, S. K. & Park, R.(2018). Catalase inhibition induces pexophagy throughROS accumulation. Biochemical and Biophysical ResearchCommunications, 501(3), 696–702. DOI: 10.1016/j.bbrc.2018.05.050.

  52. Levine, R. L., Berlett, B. S., Moskovitz, J., Mosoni, L. &Stadtman, E. R. (1999). Methionine residues may protectproteins from critical oxidative damage. Mechanisms ofAgeing and Development, 107(3), 323–332. DOI: 10.1016/S0047-6374(98)00152-3.

  53. Lim, J. B., Huang, B. K., Deen, W. M. & Sikes, H. D. (2015).Analysis of the lifetime and spatial localization of hydrogenperoxide generated in the cytosol using a reduced kineticmodel. Free Radical Biology & Medicine, 89, 47–53. DOI:10.1016/j.freeradbiomed.2015.07.009.

  54. Lo Conte, M. & Carroll, K. S. (2013). The redox biochemistryof protein sulfenylation and sulfinylation. The Journalof Biological Chemistry, 288(37), 26480–26488. DOI:10.1074/jbc.R113.467738.

  55. Lyles, M. M. & Gilbert, H. F. (1994). Mutations in the thioredoxinsites of protein disulfide isomerase reveal functionalnonequivalence of the N- and C-terminal domains. TheJournal of Biological Chemistry, 269(49), 30946–30952.DOI: 10.1016/S0021-9258(18)47373-5.

  56. Lyublinskaya, O. & Antunes, F. (2019). Measuring intracellularconcentration of hydrogen peroxide with the use ofgenetically encoded H2O2 biosensor HyPer. Redox Biology,24(6), 2213-2317. DOI: 10.1016/J.REDOX.2019.101200.

  57. Mahadev, K., Zilbering, A., Zhu, L. & Goldstein, B. J. (2001).Insulin-stimulated hydrogen peroxide reversibly inhibitsprotein-tyrosine phosphatase 1b in vivo and enhances theearly insulin action cascade. The Journal of BiologicalChemistry, 276(24), 21938-21942. DOI: 10.1074/jbc.C100109200.

  58. Malaguarnera, M., Vacante, M., Avitabile, T., Malaguarnera,M., Cammalleri, L. & Motta, M. (2009). L-Carnitinesupplementation reduces oxidized LDL cholesterol inpatients with diabetes. The American Journal of ClinicalNutrition, 89(1), 71–76. DOI: 10.3945/ajcn.2008.26251.

  59. Manczak, M., Mao, P., Calkins, M. J., Cornea, A., Reddy,A. P., Murphy, M. P., Szeto, H. H., Park, B. & Reddy, P.H. (2010). Mitochondria-targeted antioxidants protectagainst amyloid-beta toxicity in Alzheimer’s diseaseneurons. Journal of Alzheimer’s Disease: JAD, 20 Suppl2(Suppl 2), S609-3. DOI: 10.3233/JAD-2010-100564.

  60. Manikandan, P. & Nagini, S. (2018). Cytochrome P450 Structure,Function and Clinical Significance: A Review. CurrentDrug Targets, 19(1), 38–54. DOI: 10.2174/1389450118666170125144557.

  61. Marinho, H. S., Real, C., Cyrne, L., Soares, H. & Antunes, F.(2014). Hydrogen peroxide sensing, signaling and regulationof transcription factors. Redox Biology, 2(1), 535–562.DOI: 10.1016/j.redox.2014.02.006.

  62. Martyn, K. D., Frederick, L. M., von Loehneysen, K., Dinauer,M. C. & Knaus, U. G. (2006). Functional analysis of Nox4reveals unique characteristics compared to other NADPHoxidases. Cellular Signalling, 18(1), 69–82. DOI: 10.1016/j.cellsig.2005.03.023.

  63. McCord, J. M. & Fridovich, I. (1969). Superoxide Dismutase.Journal of Biological Chemistry, 244(22), 6049–6055.DOI:10.1016/S0021-9258(18)63504-5.

  64. Meira, L. B., Bugni, J. M., Green, S. L., Lee, C.W., Pang, B.,Borenshtein, D., Rickman, B. H., Rogers, A. B., Moroski-Erkul, C. A., McFaline, J. L., Schauer, D. B., Dedon, P. C.,Fox, J. G. & Samson, L. D. (2008). DNA damage inducedby chronic inflammation contributes to colon carcinogenesisin mice. The Journal of Clinical Investigation, 118(7),2516–2525. DOI:10.1172/JCI35073.

  65. Milman, U., Blum, S., Shapira, C., Aronson, D., Miller-Lotan, R.,Anbinder, Y., Alshiek, J., Bennett, L., Kostenko, M., Landau,M., Keidar, S., Levy. Y., Khemlin, A., Radan, A. & Levy, A. P.(2008). Vitamin E supplementation reduces cardiovascularevents in a subgroup of middle-aged individuals with bothtype 2 diabetes mellitus and the haptoglobin 2-2 genotype:a prospective double-blinded clinical trial. Arteriosclerosis,Thrombosis, and Vascular Biology, 28(2), 341–347. DOI:10.1161/ATVBAHA.107.153965.

  66. Mishin, V., Heck, D. E., Laskin, D. L. & Laskin, J. D.(2014). Human recombinant cytochrome P450 enzymesdisplay distinct hydrogen peroxide generating activitiesduring substrate independent NADPH oxidase reactions.Toxicological Sciences: An Official Journal of the Society ofToxicology, 141(2), 344–352. DOI: 10.1093/toxsci/kfu133.

  67. Neri, S., Signorelli, S. S., Torrisi, B., Pulvirenti, D., Mauceri,B., Abate, G., Ignaccolo, L., Bordonaro, F., Cilio, D.,Calvagno, S. & Leotta, C. (2005). Effects of antioxidantsupplementation on postprandial oxidative stressand endothelial dysfunction: a single-blind, 15-day clinicaltrial in patients with untreated type 2 diabetes, subjectswith impaired glucose tolerance, and healthy controls.Clinical Therapeutics, 27(11), 1764–1773. DOI: 10.1016/j.clinthera.2005.11.006.

  68. Niethammer, P., Grabher, C., Look, A. T. & Mitchison, T.J. (2009). A tissue-scale gradient of hydrogen peroxidemediates rapid wound detection in zebrafish. Nature,459(7249), 996–999. DOI: 10.1038/nature08119.

  69. Nisimoto, Y., Diebold, B. A., Cosentino-Gomes, D. & Lambeth,J. D. (2014). Nox4: a hydrogen peroxide-generating oxygensensor. Biochemistry, 53(31), 5111–5120. DOI: 10.1021/bi500331y.

  70. Nlandu-Khodo, S., Dissard, R., Hasler, U., Schäfer, M., Pircher,H., Jansen-Durr, P., Krause, K. H., Martin, P. Y. & deSeigneux, S. (2016). NADPH oxidase 4 deficiency increasestubular cell death during acute ischemic reperfusion injury.Scientific Reports, 6, 38598. DOI: 10.1038/srep38598.

  71. Norton, S., Matthews, F. E., Barnes, D. E., Yaffe, K. &Brayne, C. (2014). Potential for primary prevention ofAlzheimer’s disease: an analysis of population-based data.The Lancet. Neurology, 13(8), 788–794. DOI: 10.1016/S1474-4422(14)70136-X.

  72. Okado-Matsumoto, A. & Fridovich, I. (2001). SubcellularDistribution of Superoxide Dismutases (SOD) in Rat Liver.Journal of Biological Chemistry, 276(42), 38388–38393.DOI: 10.1074/jbc.M105395200.

  73. Okumoto, K., Tamura, S., Honsho, M. & Fujiki, Y. (2020).Peroxisome: Metabolic Functions and Biogenesis. Advancesin Experimental Medicine and Biology, 1299, 3–17. DOI:10.1007/978-3-030-60204-8_1.

  74. Palacka, P., Kucharska, J., Murin, J., Dostalova, K., Okkelova, A.,Cizova, M., Waczulikova, I., Moricova, S. & Gvozdjakova,A. (2010). Complementary therapy in diabetic patients withchronic complications: a pilot study. Bratislavske LekarskeListy, 111(4), 205–211.

  75. Palma, F. R., He, C., Danes, J. M., Paviani, V., Coelho, D. R.,Gantner, B. N. & Bonini, M. G. (2020). MitochondrialSuperoxide Dismutase: What the Established, the Intriguing,and the Novel Reveal About a Key Cellular Redox Switch.Antioxidants & Redox Signaling, 32(10), 701–714. DOI:10.1089/ars.2019.7962.

  76. Panday, A., Sahoo, M. K., Osorio, D. & Batra, S. (2015).NADPH oxidases: an overview from structure to innateimmunity-associated pathologies. Cellular & MolecularImmunology, 12(1), 5–23. DOI: 10.1038/cmi.2014.89.

  77. Park, S. & Choi, S. B. (2002). Effects of alpha-tocopherolsupplementation and continuous subcutaneousinsulin infusion on oxidative stress in Korean patientswith type 2 diabetes. The American Journal of ClinicalNutrition, 75(4), 728–733. DOI: 10.1093/ajcn/75.4.728.

  78. Peskin, A. V, Dickerhof, N., Poynton, R. A., Paton, L. N.,Pace, P. E., Hampton, M. B. & Winterbourn, C. C. (2013).Hyperoxidation of peroxiredoxins 2 and 3: rate constantsfor the reactions of the sulfenic acid of the peroxidaticcysteine. The Journal of Biological Chemistry, 288(20),14170–14177. DOI: 10.1074/jbc.M113.460881

  79. Pirinen, E., Cantó, C., Jo, Y. S., Morato, L., Zhang, H., Menzies,K. J., Williams, E. G., Mouchiroud, L., Moullan, N.,Hagberg, C., Li, W., Timmers, S., Imhor, R., Verbeek,J., Pujol, A., van Loon, B., Viscomi, C., Zeviani, M.,Schrauwen, P., Sauve, A., Schoonjans, K. & Auwerx, J.(2014). Pharmacological Inhibition of poly (ADP-ribose)polymerases improves fitness and mitochondrial functionin skeletal muscle. Cell Metabolism, 19(6), 1034–1041.DOI: 10.1016/j.cmet.2014.04.002.

  80. Qayyum, N., Haseeb, M., Kim, M. S. & Choi, S. (2021). Roleof Thioredoxin-Interacting Protein in Diseases and ItsTherapeutic Outlook. International Journal of MolecularSciences, 22(5), 1–21. DOI: 10.3390/ijms22052754.

  81. Ramana, K. V, Friedrich, B., Tammali, R., West, M. B.,Bhatnagar, A. & Srivastava, S. K. (2005). Requirement ofaldose reductase for the hyperglycemic activation of proteinkinase C and formation of diacylglycerol in vascular smoothmuscle cells. Diabetes, 54(3), 818–829. DOI: 10.2337/diabetes.54.3.818.

  82. Rani, V., Deep, G., Singh, R. K., Palle, K. & Yadav, U. C.S. (2016). Oxidative stress and metabolic disorders:Pathogenesis and therapeutic strategies. Life Sciences, 148,183-193. DOI: 10.1016/j.lfs.2016.02.002.

  83. Rosca, M. G., Vázquez, E. J. Chen, Q., Kerner, J., Kern, T.S. & Hoppel, C. L. (2012). Oxidation of fatty acids is thesource of increased mitochondrial reactive oxygen speciesproduction in kidney cortical tubules in early diabetes.Diabetes, 61(8), 2074-2083. DOI: 10.2337/db11-1437.

  84. Sablina, A. A., Budanov, A. V, Ilyinskaya, G. V, Agapova, L.S., Kravchenko, J. E. & Chumakov, P. M. (2005). Theantioxidant function of the p53 tumor suppressor. NatureMedicine, 11(12), 1306–1313. DOI: 10.1038/nm1320.

  85. Santos, F. R., Diamond-Stanic, M. K., Prasannarong, M.& Henriksen, E. J. (2012). Contribution of the serinekinase c-Jun N-terminal kinase (JNK) to oxidant-inducedinsulin resistance in isolated rat skeletal muscle. Archivesof Physiology and Biochemistry, 118(5), 231–236. DOI:10.3109/13813455.2012.713366.

  86. Sarwar, N., Gao, P., Seshasai, S. R. K., Gobin, R., Kaptoge,S., Di Angelantonio, E., Ingelsson, E., Lawlor, D. A.,Selvin, E., Stampfer, M., Stehouwer, C. D., Lewington,S., Pennells, L., Thompson, A., Sattar, N., White, I. R.,Ray, K. K. & Danesh, J. (2010). Diabetes mellitus, fastingblood glucose concentration, and risk of vascular disease:a collaborative meta-analysis of 102 prospective studies.Lancet (London, England), 375(9733), 2215–2222. DOI:10.1016/S0140-6736(10)60484-9.

  87. Schoonbroodt, S., Ferreira, V., Best-Belpomme, M., Boelaert,J. R., Legrand-Poels, S., Korner, M. & Piette, J. (2000).Crucial role of the amino-terminal tyrosine residue 42 andthe carboxyl-terminal PEST domain of I kappa B alpha inNF-kappa B activation by an oxidative stress. Journal ofImmunology (Baltimore, Md.: 1950), 164(8), 4292–4300.DOI: 10.4049/jimmunol.164.8.4292.

  88. Shadel, G. S. & Horvath, T. L. (2015). Mitochondrial ROSsignaling in organismal homeostasis. Cell, 163(3), 560-569.DOI: 10.1016/j.cell.2015.10.001.

  89. Sharifi-Rad, M., Anil Kumar, N. V, Zucca, P., Varoni, E. M., Dini,L., Panzarini, E., Rajkovic, J., Tsouh Fokou, P. V., Azzini,E., Peluso, I., Mishra, A. P., Nigam, M., El Rayess, Y., ElBeyrouthy, M., Polito, L., Iriti, M., Martins, N., Martonell,M., Docea, A. O., Setzer, W. N., Calina, D., Cho, W. C.& Sharifi-Rad, J. (2020). Lifestyle, Oxidative Stress, andAntioxidants: Back and Forth in the Pathophysiology ofChronic Diseases. Frontiers in Physiology, 11, 694. DOI:10.3389/fphys.2020.00694.

  90. Sies, H. (2014). Role of metabolic H2O2 generation: redoxsignaling and oxidative stress. Journal of BiologicalChemistry, 289(13), 8735–8741. DOI: 10.1074/jbc.R113.544635.

  91. Silva-Rodrigues, T., de-Souza-Ferreira, E., Machado, C. M.,Cabral-Braga, B., Rodrigues-Ferreira, C. & Galina, A.(2020). Hyperglycemia in a type 1 Diabetes Mellitusmodel causes a shift in mitochondria coupled-glucosephosphorylation and redox metabolism in rat brain. FreeRadical Biology and Medicine, 160, 796–806. DOI:10.1016/j.freeradbiomed.2020.09.017.

  92. Solinas, G. & Karin, M. (2010). JNK1 and IKKβ: molecular linksbetween obesity and metabolic dysfunction. The FASEBJournal, 24(8), 2596–2611. DOI: 10.1096/FJ.09-151340.

  93. Stein, K. T., Moon, S. J., Nguyen, A. N. & Sikes, H. D. (2020).Kinetic modeling of H2 O2 dynamics in the mitochondria ofHeLa cells. PLoS Computational Biology, 16(9), e1008202.DOI: 10.1371/journal.pcbi.1008202.

  94. Storozhevykh, T. P., Senilova, Y. E., Persiyantseva, N. A., Pinelis,V. G. & Pomytkin, I. A. (2007). Mitochondrial respiratorychain is involved in insulin-stimulated hydrogen peroxideproduction and plays an integral role in insulin receptorautophosphorylation in neurons. BMC Neuroscience, 8,84. DOI: 10.1186/1471-2202-8-84.

  95. Teo, Z. L., Tham, Y.-C., Yu, M., Chee, M. L., Rim, T. H.,Cheung, N., Bikbov, M. M., Wang, Y. X., Tang, Y., Lu,Y., Wong, I. Y., Ting, DSW., Tan, G. S.W., Jonas. J, B.,Sabanayagam, C., Wong, T. Y. & Cheng, C.-Y. (2021).Global Prevalence of Diabetic Retinopathy and Projectionof Burden through 2045: Systematic Review and Metaanalysis.Ophthalmology, 128(11), 1580–1591. DOI:10.1016/j.ophtha.2021.04.027.

  96. Thannickal, V. J., Hassoun, P. M., White, A. C. & Fanburg, B.L. (1993). Enhanced rate of H2O2 release from bovinepulmonary artery endothelial cells induced by TGF-beta 1.The American Journal of Physiology, 265(6 Pt 1), L622-6.DOI: 10.1152/ajplung.1993.265.6.L622.

  97. Thornalley, P. J., Langborg, A. & Minhas, H. S. (1999).Formation of glyoxal, methylglyoxal and 3-deoxyglucosonein the glycation of proteins by glucose. The BiochemicalJournal, 344 Pt 1(Pt 1), 109–116. DOI:10.1042/BJ3440109.

  98. Torres, M. & Forman, H. J. (1999). Activation of several MAPkinases upon stimulation of rat alveolar macrophages:role of the NADPH oxidase. Archives of Biochemistryand Biophysics, 366(2), 231–239. DOI: 10.1006/abbi.1999.1225.

  99. Trinei, M., Giorgio, M., Cicalese, A., Barozzi, S., Ventura,A., Migliaccio, E., Milia, E., Padura, I. M., Raker, V. A.,Maccarana, M., Petronilli, V., Minucci, S., Bernardi, P.,Lanfrancone, L. & Pelicci, P. G. (2002). A p53-p66Shcsignalling pathway controls intracellular redox status, levelsof oxidation-damaged DNA and oxidative stress-inducedapoptosis. Oncogene, 21(24), 3872–3878. DOI: 10.1038/sj.onc.1205513.

  100. Tyurin-Kuzmin, P. A., Zhdanovskaya, N. D., Sukhova, A. A.,Sagaradze, G. D., Albert, E. A., Ageeva, L. V, Sharonov,G. V., Vorotnikov, A.V. & Tkachuk, V. A. (2016). Nox4and Duox1/2 Mediate Redox Activation of MesenchymalCell Migration by PDGF. PloS One, 11(4), e0154157. DOI:10.1371/journal.pone.0154157.

  101. van der Vliet, A., Hu, M. L., O’Neill, C. A., Cross, C. E. &Halliwell, B. (1994). Interactions of human blood plasmawith hydrogen peroxide and hypochlorous acid. The Journalof Laboratory and Clinical Medicine, 124(5), 701–707.DOI: 10.5555/uri:pii:0022214394901163.

  102. Vincent, H. K. & Taylor, A. G. (2006). Biomarkers and potentialmechanisms of obesity-induced oxidant stress in humans.International Journal of Obesity, 30(3), 400–418. DOI:10.1038/sj.ijo.0803177.

  103. von Löhneysen, K., Noack, D., Hayes, P., Friedman, J. S. &Knaus, U. G. (2012). Constitutive NADPH oxidase 4 activityresides in the composition of the B-loop and the penultimateC terminus. The Journal of Biological Chemistry, 287(12),8737–8745. DOI: 10.1074/jbc.M111.332494.

  104. Wang, W.-X., Jiang, W.-L., Mao, G.-J., Tan, M., Fei, J., Li, Y. &Li, C.-Y. (2021). Monitoring the Fluctuation of HydrogenPeroxide in Diabetes and Its Complications with a NovelNear-Infrared Fluorescent Probe. Analytical Chemistry,93(6), 3301–3307. DOI: 10.1021/acs.analchem.0c05364.

  105. Wu, R. F., Liao, C., Hatoum, H., Fu, G., Ochoa, C. D. &Terada, L. S. (2017). RasGRF Couples Nox4-DependentEndoplasmic Reticulum Signaling to Ras. Arteriosclerosis,Thrombosis, and Vascular Biology, 37(1), 98–107. DOI:10.1161/ATVBAHA.116.307922.

  106. Xia, P., Inoguchi, T., Kern, T. S., Engerman, R. L., Oates, P. J.& King, G. L. (1994). Characterization of the mechanismfor the chronic activation of diacylglycerol-protein kinaseC pathway in diabetes and hypergalactosemia. Diabetes,43(9), 1122–1129. DOI: 10.2337/diab.43.9.1122.

  107. Xue, M., Xu, W., Ou, Y.-N., Cao, X.-P., Tan, M.-S., Tan, L. &Yu, J.-T. (2019). Diabetes mellitus and risks of cognitiveimpairment and dementia: A systematic review and metaanalysisof 144 prospective studies. Ageing ResearchReviews, 55, 100944. DOI: 10.1016/j.arr.2019.100944.

  108. Yamakawa, H., Ito, Y., Naganawa, T., Banno, Y., Nakashima,S., Yoshimura, S., Sawada, M., Nishimura, Y., Nozawa,Y. & Sakai, N. (2000). Activation of caspase-9 and -3during H2O2-induced apoptosis of PC12 cells independentof ceramide formation. Neurological Research, 22(6),556–564. DOI: 10.1080/01616412.2000.11740718.

  109. Yao, D. & Brownlee, M. (2009). Hyperglycemia-InducedReactive Oxygen Species Increase Expression of theReceptor for Advanced Glycation End Products (RAGE)and RAGE Ligands. Diabetes, 59(1), 249–255. DOI:10.2337/db09-0801.

  110. Yoshino, G., Tanaka, M., Nakano, S., Matsumoto, T., Kojima, M.,Murakami, E. & Morita, T. (2009). Effect of rosuvastatin onconcentrations of plasma lipids, urine and plasma oxidativestress markers, and plasma high-sensitivity C-reactiveprotein in hypercholesterolemic patients with and withouttype 2 diabetes mellitus: A 12-week, open-label, pilot study.Current Therapeutic Research, Clinical and Experimental,70(6), 439–448. DOI: 10.1016/j.curtheres.2009.12.003.

  111. Zafari, A. M., Ushio-Fukai, M., Akers, M., Yin, Q., Shah,A., Harrison, D. G., Taylor, W. R. & Griendling, K. K.(1998). Role of NADH/NADPH oxidase-derived H2 O2 inangiotensin II-induced vascular hypertrophy. Hypertension(Dallas, Tex.: 1979), 32(3), 488–495. DOI: 10.1161/01.hyp.32.3.488.

  112. Zang, L. Y. & Misra, H. P. (1992). EPR kinetic studies ofsuperoxide radicals generated during the autoxidationof1-methyl-4-phenyl-2,3-dihydropyridinium, a bioactivatedintermediate of parkinsonian-inducing neurotoxin1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. The Journalof Biological Chemistry, 267(33), 23601–23608. DOI:10.1016/S0021-9258(18)35881-2.

  113. Zhang, L., Nguyen, M. V. C., Lardy, B., Jesaitis, A. J., Grichine,A., Rousset, F., Talbot, M., Paclet, M-H., Qian, G. &Morel, F. (2011). New insight into the Nox4 subcellularlocalization in HEK293 cells: first monoclonal antibodiesagainst Nox4. Biochimie, 93(3), 457–468. DOI: 10.1016/j.biochi.2010.11.001.

  114. Zito, E., Melo, E. P., Yang, Y., Wahlander, Å., Neubert, T. A. &Ron, D. (2010). Oxidative protein folding by an endoplasmicreticulum-localized peroxiredoxin. Molecular Cell, 40(5),787–797. DOI: 10.1016/j.molcel.2010.11.010.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2023;26