medigraphic.com
SPANISH

TIP Revista Especializada en Ciencias Químico-Biológicas

ISSN 2395-8723 (Electronic)
ISSN 1405-888X (Print)
TIP Revista Especializada en Ciencias Químico-Biológicas
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2023, Number 1

<< Back Next >>

TIP Rev Esp Cienc Quim Biol 2023; 26 (1)

Biopeptides derived from pseudocereals: Amaranth, Quinoa, Chia and Buckwheat

Reyes-Bautista R, Barajas-Segoviano M, Flores-Sierra JJ, Hernández-Mendoza G, Xoca-Orozco LÁ
Full text How to cite this article

Language: Spanish
References: 108
Page: 1-27
PDF size: 682.34 Kb.


Key words:

pseudocereals, peptides, amaranth, quinoa, chia and buckwheat.

ABSTRACT

Plant-based proteins are of great interest to the world's population for being a safe and sustainable supply as they leave a smaller carbon footprint. They are found in pseudocereals: Amaranth, Quinoa, Chia and Buckwheat that have been consumed since ancient times. These plants do not belong to the cereal family, but they have similar properties and uses, however, they are currently little exploited; Their proteins with an ideal amino acid composition make them a beneficial food for human health. The objective of this review is to present what has been investigated regarding these proteins and hydrolysates, their general characteristics according to the Osborne classification (albumins, globulins, prolamins and glutelins), an evaluation after their purification and identification, the production of peptides through enzymatic hydrolysis (in vitro and in vivo), fermentation by specific microorganisms, their pharmacological activities such as antihypertensive, antidiabetic, antioxidants, anticancer, antimicrobial, among other benefits that have increased their relevance.


REFERENCES

  1. Alonso-Miravalles, L. & O’Mahony, J. (2018). Composition,Protein Profile and Rheological Properties of Pseudocereal-Based Protein-Rich Ingredients. Foods, 7(5), 73. https://doi.org/10.3390/foods7050073

  2. Aluko, R. E. & Monu, E. (2003). Functional and BioactiveProperties of Quinoa Seed Protein Hydrolysates.Journal of Food Science, 68(4), 1254–1258. https://doi.org/10.1111/j.1365-2621.2003.tb09635.x

  3. Álvarez-Jubete, L., Auty, M., Arendt, E. K. & Gallagher,E. (2010). Baking properties and microstructure ofpseudocereal flours in gluten-free bread formulations.European Food Research and Technology, 230(3), 437–445.https://doi.org/10.1007/s00217-009-1184-z

  4. Amézqueta, S., Galán, E., Vila-Fernández, I., Pumarola, S.,Carrascal, M., Abian, J., Ribas-Barba, L., Serra-Majem,L. & Torres, J. L. (2013). The presence of d-fagomine inthe human diet from buckwheat-based foodstuffs. FoodChemistry, 136(3–4), 1316–1321. https://doi.org/10.1016/j.foodchem.2012.09.038

  5. Ando, H., Chen, Y.-C., Tang, H., Shimizu, M., Watanabe, K.& Mitsunaga, T. (2002). Food Components in Fractionsof Quinoa Seed. Food Science and Technology Research,8(1), 80–84. https://doi.org/10.3136/fstr.8.80

  6. Ávila Ruiz, G., Arts, A., Minor, M. & Schutyser, M. (2016). AHybrid Dry and Aqueous Fractionation Method to ObtainProtein-Rich Fractions from Quinoa (Chenopodium quinoaWilld.). Food and Bioprocess Technology, 9(9), 1502–1510.https://doi.org/10.1007/s11947-016-1731-0

  7. Baggio, L. L. & Drucker, D. J. (2007). Biology of Incretins:GLP-1 and GIP. Gastroenterology, 132(6), 2131–2157.https://doi.org/10.1053/j.gastro.2007.03.054

  8. Barba de la Rosa, A. P., Barba Montoya, A., Martínez-Cuevas,P., Hernández-Ledesma, B., León-Galván, M. F., de León-Rodríguez, A. & González, C. (2010). Tryptic amaranthglutelin digests induce endothelial nitric oxide productionthrough inhibition of ACE: Antihypertensive role ofamaranth peptides. Nitric Oxide, 23(2), 106–111. https://doi.org/10.1016/j.niox.2010.04.006

  9. Bressani, R. (1989). The proteins of grain amaranth.Food Reviews International, 5(1), 13–38. https://doi.org/10.1080/87559128909540843

  10. Brinegar, C. & Goundan, S. (1993). Isolation and characterizationof chenopodin, the 11S seed storage protein of quinoa(Chenopodium quinoa). Journal of Agricultural andFood Chemistry, 41(2), 182–185. https://doi.org/10.1021/jf00026a006

  11. Búcaro Segura, M. E. & Bressan, R. (2002). Distribución de laproteína en fracciones físicas de la molienda y tamizadodel grano de amaranto. Archivos Latinoamericanos deNutrición, 52(2), 167–171.

  12. Carrasco, E. & Soto, J. L. (2010). Importancia de los granosandinos. In Granos andinos: avances, logros y experienciasdesarrolladas en quinoa, canihua y kiwicha en Perú (R.V. K. A. S. P. and M. Jagger. R. Bravo, Ed.). BiodiversityInternational. Roma, Italia.

  13. Ciudad-Mulero, M., Fernández-Ruiz, V., Matallana-González,M. C. & Morales, P. (2019). Dietary fiber sources andhuman benefits: The case study of cereal and pseudocereals.Advances in Food and Nutrition Research, 90, 83–134.https://doi.org/10.1016/BS.AFNR.2019.02.002

  14. Coelho, M., Aquino, A.S.D., Latorres, M. J. & Salas-Mellado, M.D. L. M (2019). In vitro and in vivo antioxidant capacity ofchia protein hydrolysates and peptides. Food Hydrocolloids,91, 19–25. https://doi.org/10.1016/j.foodhyd.2019.01.018

  15. Coelho, M. S., Soares-Freitas, R. A. M., Arêas, J. A. G., Gandra,E. A. & Salas-Mellado, M. de las M. (2018). Peptides fromChia Present Antibacterial Activity and Inhibit CholesterolSynthesis. Plant Foods for Human Nutrition, 73(2), 101–107. https://doi.org/10.1007/s11130-018-0668-z

  16. Cui, X., Du, J., Li, J. & Wang, Z. (2018). Inhibitory site ofα-hairpinin peptide from tartary buckwheat has no effect onits antimicrobial activities. Acta Biochimica et BiophysicaSinica, 50(4), 408–416. https://doi.org/10.1093/abbs/gmy015

  17. D’Amico, S., Jungkunz, S., Balasz, G., Foeste, M., Jekle, M.,Tömösköszi, S. & Schoenlechner, R. (2019). Abrasivemilling of quinoa: Study on the distribution of selectednutrients and proteins within the quinoa seed kernel. Journalof Cereal Science, 86, 132–138. https://doi.org/10.1016/j.jcs.2019.01.007

  18. de Castro, R. J. S. & Sato, H. H. (2015). Biologically activepeptides: Processes for their generation, purification andidentification and applications as natural additives inthe food and pharmaceutical industries. Food ResearchInternational, 74, 185–198. https://doi.org/10.1016/j.foodres.2015.05.013

  19. de la Cruz-Torres, E. & Garcia-Andrade, J. M. (2007).Mejoramiento de pseudocereales en el ININ. ContactoNuclear, 48, 35–40.

  20. Delgado, M. C. O., Galleano, M., Añón, M. C. & Tironi, V. A.(2015). Amaranth Peptides from Simulated GastrointestinalDigestion: Antioxidant Activity Against Reactive Species.Plant Foods for Human Nutrition, 70(1), 27–34. https://doi.org/10.1007/s11130-014-0457-2

  21. Dodok, L., Modhir, A. A., Buchtová, V., Halásová, G. & Poláček,I. (1997). Importance and utilization of amaranth in foodindustry. Part 2. Composition of amino acids and fatty acids.Food / Nahrung, 41(2), 108–110. https://doi.org/10.1002/food.19970410211

  22. Dong, S., Yang, X., Zhao, L., Zhang, F., Hou, Z. & Xue, P. (2020).Antibacterial activity and mechanism of action saponinsfrom Chenopodium quinoa Willd. husks against foodbornepathogenic bacteria. Industrial Crops and Products, 149,112350. https://doi.org/10.1016/j.indcrop.2020.112350

  23. FAOASTAT. (2015). Food and Agriculture Organization ofthe United Nations. Food Security and the Right to Food.

  24. FAOSTAT. (2018). Food and Agriculture Organization of theUnited Nations. FAOSTAT Online Database.

  25. Galvez, A. F., Chen, N., Macasieb, J. & de Lumen, B. O. (2001).Chemopreventive property of a soybean peptide (lunasin)that binds to deacetylated histones and inhibits acetylation.Cancer Research, 61(20), 7473–7478.

  26. Giménez-Bastida, J. A. & Zieliński, H. (2015). Buckwheat asa Functional Food and Its Effects on Health. Journal ofAgricultural and Food Chemistry, 63(36), 7896–7913.https://doi.org/10.1021/acs.jafc.5b02498

  27. González-Aguilar, G. A., González-Córdova, A. F., VallejoCordoba, E., Álvarez-Parrilla, E. & García, H. S. (2014).Los Alimentos Funcionales: Un nuevo reto para la industriade alimentos (AGT). México.

  28. Graf, B. L., Rojas-Silva, P., Rojo, L. E., Delatorre-Herrera,J., Baldeón, M. E. & Raskin, I. (2015). Innovations inHealth Value and Functional Food Development of Quinoa(Chenopodium quinoa Willd.). Comprehensive Reviews inFood Science and Food Safety, 14(4), 431–445. https://doi.org/10.1111/1541-4337.12135

  29. Grancieri, M., Martino, H. S. D. & González de Mejía, E. (2019a).Chia Seed (Salvia hispanica L.) as a Source of Proteinsand Bioactive Peptides with Health Benefits: A Review.Comprehensive Reviews in Food Science and Food Safety,18(2), 480–499. https://doi.org/10.1111/1541-4337.12423

  30. Grancieri, M., Martino, H. S. D. & González de Mejía, E.(2019b). Digested total protein and protein fractions fromchia seed (Salvia hispanica L.) had high scavenging capacityand inhibited 5-LOX, COX-1-2, and iNOS enzymes.Food Chemistry, 289, 204–214. https://doi.org/10.1016/j.foodchem.2019.03.036

  31. Guo, H., Hao, Y., Richel, A., Everaert, N., Chen, Y., Liu, M.,Yang, X. & Ren, G. (2020). Antihypertensive effect ofquinoa protein under simulated gastrointestinal digestionand peptide characterization. Journal of the Science ofFood and Agriculture, 100(15), 5569–5576. https://doi.org/10.1002/jsfa.10609

  32. Hernández-Ledesma, B., del Mar Contreras, M. & Recio,I. (2011). Antihypertensive peptides: Production,bioavailability and incorporation into foods. Advances inColloid and Interface Science, 165(1), 23–35. https://doi.org/10.1016/J.CIS.2010.11.001

  33. Inouye, K., Nakano, K., Asaoka, K. & Yasukawa, K. (2009).Effects of Thermal Treatment on the Coagulation of SoyProteins Induced by Subtilisin Carlsberg. Journal ofAgricultural and Food Chemistry, 57(2), 717–723. https://doi.org/10.1021/jf802693f

  34. James, L. E. A. (2009). Quinoa (Chenopodium quinoa Willd.):Composition, Chemistry, Nutritional, and FunctionalProperties. Advances in Food and Nutrition Research, 58,1–31. https://doi.org/10.1016/S1043-4526(09)58001-1

  35. Janssen, F., Pauly, A., Rombouts, I., Jansens, K. J. A., Deleu,L. J. & Delcour, J. A. (2017). Proteins of Amaranth(Amaranthus spp.), Buckwheat (Fagopyrum spp.),and Quinoa (Chenopodium spp.): A Food Science andTechnology Perspective. Comprehensive Reviews inFood Science and Food Safety, 16(1), 39–58. https://doi.org/10.1111/1541-4337.12240

  36. Korhonen, H. & Pihlanto, A. (2003). Food-derived bioactivepeptides--opportunities for designing future foods. CurrentPharmaceutical Design, 9(16), 1297–1308. https://doi.org/10.2174/1381612033454892

  37. Koyama, M., Hattori, S., Amano, Y., Watanabe, M. & Nakamura,K. (2014). Blood Pressure-Lowering Peptides fromNeo-Fermented Buckwheat Sprouts: A New Approachto Estimating ACE-Inhibitory Activity. PLoS ONE, 9(9),e105802. https://doi.org/10.1371/journal.pone.0105802

  38. Koyama, M., Naramoto, K., Nakajima, T., Aoyama, T.,Watanabe, M. & Nakamura, K. (2013). Purification andIdentification of Antihypertensive Peptides from FermentedBuckwheat Sprouts. Journal of Agricultural and FoodChemistry, 61(12), 3013–3021. https://doi.org/10.1021/jf305157y

  39. Kozioł, M. J. (1992). Chemical composition and nutritionalevaluation of quinoa (Chenopodium quinoa Willd.). Journalof Food Composition and Analysis, 5(1), 35–68. https://doi.org/10.1016/0889-1575(92)90006-6

  40. Kristinsson, H. G. & Rasco, B. A. (2000). Fish ProteinHydrolysates: Production, Biochemical, and FunctionalProperties. Critical Reviews in Food Science and Nutrition,40(1), 43–81. https://doi.org/10.1080/10408690091189266

  41. Li, C., Li, W., Zhang, Y. & Simpson, B. K. (2020). Comparisonof physicochemical properties of recombinant buckwheattrypsin inhibitor (rBTI) and soybean trypsin inhibitor(SBTI). Protein Expression and Purification, 171, 105614.https://doi.org/10.1016/j.pep.2020.105614

  42. Li, J., Cui, X., Ma, X., Li, C. & Wang, Z. (2019). RecombinantBuckwheat Trypsin Inhibitor Improves the Protein andMitochondria Homeostasis in Caenorhabditis elegansModel of Aging and Age-Related Disease. Gerontology,65(5), 513–523. https://doi.org/10.1159/000500156

  43. Li, J., Cui, X., Wang, Z. & Li, Y. (2015). rBTI extendsCaenorhabditis elegans lifespan by mimicking calorierestriction. Experimental Gerontology, 67, 62–71. https://doi.org/10.1016/j.exger.2015.05.001

  44. Li, Matsui, T., Matsumoto, K., Yamasaki, R. & Kawasaki,T. (2002). Latent production of angiotensin I-convertingenzyme inhibitors from buckwheat protein. Journal ofPeptide Science, 8(6), 267–274. https://doi.org/10.1002/psc.387

  45. Li, Y., Yang, N., Shi, F., Ye, F. & Huang, J. (2023). Isolation andidentification of angiotensin-converting enzyme inhibitorypeptides from Tartary buckwheat albumin. Journal of theScience of Food and Agriculture, 103(10), 5019–5027.https://doi.org/10.1002/jsfa.12573

  46. López, D. N., Galante, M., Robson, M., Boeris, V. & Spelzini,D. (2018a). Amaranth, quinoa and chia protein isolates:Physicochemical and structural properties. InternationalJournal of Biological Macromolecules, 109, 152–159.https://doi.org/10.1016/j.ijbiomac.2017.12.080

  47. López, D. N., Ingrassia, R., Busti, P., Bonino, J., Delgado, J. F.,Wagner, J., Boeris, V. & Spelzini, D. (2018b). Structuralcharacterization of protein isolates obtained from chia(Salvia hispanica L.) seeds. LWT, 90, 396–402. https://doi.org/10.1016/j.lwt.2017.12.060

  48. Luo, X., Fei, Y., Xu, Q., Lei, T., Mo, X., Wang, Z., Zhang,L., Mou, X. & Li, H. (2020). Isolation and identificationof antioxidant peptides from tartary buckwheat albumin(Fagopyrum tataricum Gaertn) and their antioxidantactivities. Journal of Food Science, 85(3), 611–617. https://doi.org/10.1111/1750-3841.15004

  49. Luthar, Z., Golob, A., Germ, M., Vombergar, B. & Kreft, I.(2021). Tartary Buckwheat in Human Nutrition. Plants,10(4), 700. https://doi.org/10.3390/plants10040700

  50. Maestri, E., Marmiroli, M. & Marmiroli, N. (2016). Bioactivepeptides in plant-derived foodstuffs. Journal of Proteomics,147, 140–155. https://doi.org/10.1016/j.jprot.2016.03.048

  51. Maldonado-Cervantes, E., Jeong, H. J., León-Galván, F.,Barrera-Pacheco, A., de León-Rodríguez, A., Gonzálezde Mejía, E., de Lumen, B. O. & Barba de la Rosa, A.P. (2010). Amaranth lunasin-like peptide internalizesinto the cell nucleus and inhibits chemical carcinogeninducedtransformation of NIH-3T3 cells. Peptides, 31(9),1635–1642. https://doi.org/10.1016/j.peptides.2010.06.014

  52. Martínez Leo, E. E. & Segura Campos, M. R. (2020).Neuroprotective effect from Salvia hispanica peptidefractions on pro-inflammatory modulation of HMC3microglial cells. Journal of Food Biochemistry, 44(6), 1-8.https://doi.org/10.1111/jfbc.13207

  53. Morales, D., Miguel, M. & Garcés-Rimón, M. (2021).Pseudocereals: a novel source of biologically activepeptides. Critical Reviews in Food Science and Nutrition,61(9), 1537–1544. https://doi.org/10.1080/10408398.2020.1761774

  54. Mudgil, P., Kilari, B. P., Kamal, H., Olalere, O. A., FitzGerald,R. J., Gan, C.-Y. & Maqsood, S. (2020). Multifunctionalbioactive peptides derived from quinoa protein hydrolysates:Inhibition of α-glucosidase, dipeptidyl peptidase-IV andangiotensin I converting enzymes. Journal of Cereal Science,96, 103130. https://doi.org/10.1016/j.jcs.2020.103130

  55. Mudgil, P., Omar, L. S., Kamal, H., Kilari, B. P. & Maqsood,S. (2019). Multi-functional bioactive properties of intactand enzymatically hydrolysed quinoa and amaranthproteins. LWT, 110, 207–213. https://doi.org/10.1016/j.lwt.2019.04.084

  56. Nakamura, K., Naramoto, K. & Koyama, M. (2013). Bloodpressure-lowering effect of fermented buckwheatsprouts in spontaneously hypertensive rats. Journal ofFunctional Foods, 5(1), 406–415. https://doi.org/10.1016/J.JFF.2012.11.013

  57. Nongonierma, A. B., le Maux, S., Dubrulle, C., Barre, C. &FitzGerald, R. J. (2015). Quinoa (Chenopodium quinoaWilld.) protein hydrolysates with in vitro dipeptidylpeptidase IV (DPP-IV) inhibitory and antioxidant properties.Journal of Cereal Science, 65, 112–118. https://doi.org/10.1016/j.jcs.2015.07.004

  58. Obaroakpo, J. U., Liu, L., Zhang, S., Lu, J., Pang, X. & Lv,J. (2019). α-Glucosidase and ACE dual inhibitory proteinhydrolysates and peptide fractions of sprouted quinoayoghurt beverages inoculated with Lactobacillus casei.Food Chemistry, 299, 124985. https://doi.org/10.1016/j.foodchem.2019.124985

  59. Olivera-Montenegro, L., Best, I. & Gil-Saldarriaga, A. (2021).Effect of pretreatment by supercritical fluids on antioxidantactivity of protein hydrolyzate from quinoa (Chenopodiumquinoa Willd.). Food Science & Nutrition, 9(1), 574–582.https://doi.org/10.1002/fsn3.2027

  60. Orona-Tamayo, D., Valverde, M. E., Nieto-Rendón, B. &Paredes-López, O. (2015). Inhibitory activity of chia(Salvia hispanica L.) protein fractions against angiotensinI-converting enzyme and antioxidant capacity. LWT - FoodScience and Technology, 64(1), 236–242. https://doi.org/10.1016/j.lwt.2015.05.033

  61. Orsini Delgado, M. C., Nardo, A., Pavlovic, M., Rogniaux,H., Añón, M. C. & Tironi, V. A. (2016). Identificationand characterization of antioxidant peptides obtainedby gastrointestinal digestion of amaranth proteins. FoodChemistry, 197Pt B, 1160–1167. https://doi.org/10.1016/j.foodchem.2015.11.092

  62. Orsini Delgado, M. C., Tironi, V. A. & Añón, M. C. (2011).Antioxidant activity of amaranth protein or theirhydrolysates under simulated gastrointestinal digestion.LWT - Food Science and Technology, 44(8), 1752–1760.https://doi.org/10.1016/j.lwt.2011.04.002

  63. Osborne, T. B., Van Slyke, D. D., Leavenworth, C. S. &Vinograd, M. (1915). Some Products of Hydrolysis ofGliadin, Lactalbumin, and the Protein of the Rice Kernel.Journal of Biological Chemistry, 22(2), 259–280. https://doi.org/10.1016/S0021-9258(18)87644-X

  64. Oseguera-Toledo, M. E., González de Mejía, E., Reynoso-Camacho, R., Cardador-Martínez, A. & Amaya-Llano, S. L.(2014). Proteins and bioactive peptides. Nutrafoods, 13(4),147–157. https://doi.org/10.1007/s13749-014-0052-z

  65. Panchaud, A., Affolter, M. & Kussmann, M. (2012). Massspectrometry for nutritional peptidomics: How to analyzefood bioactives and their health effects. Journal ofProteomics, 75(12), 3546–3559. https://doi.org/10.1016/j.jprot.2011.12.022

  66. Perez Espitia, P. J., de Fátima Ferreira Soares, N., dos ReisCoimbra, J. S., de Andrade, N. J., Souza Cruz, R. & AlvesMedeiros, E. A. (2012). Bioactive Peptides: Synthesis,Properties, and Applications in the Packaging andPreservation of Food. Comprehensive Reviews in FoodScience and Food Safety, 11(2), 187–204. https://doi.org/10.1111/j.1541-4337.2011.00179.x

  67. Petrova, P. & Petrov, K. (2020). Lactic Acid Fermentationof Cereals and Pseudocereals: Ancient NutritionalBiotechnologies with Modern Applications. Nutrients,12(4), 1118. https://doi.org/10.3390/nu12041118

  68. Rabai, R., Rafiq Khan, M., Mahreen Mehwish, H., Riaz Rajoka,M. S., Lorenzo, J. M., Kieliszek, M., Rauf Khalid, A.,Asim Shabbir, M. & Aadi, R. M. (2021). An overviewof chia seed (Salvia hispanica L.) bioactive peptides’derivation and utilization as an emerging nutraceutical food.Frontiers in Bioscience-Landmark, 26(9), 643. https://doi.org/10.52586/4973

  69. Reyes-Bautista, R., Flores-Sierra, J. de J., Hernández-Mendoza,G. & Xoca-Orozco, L. Á. (2023). Biologically ActivePeptides from Quinoa (Chenopodium quinoa Willd.) Grain.In Potential Health Benefits of Biologically Active PeptidesDerived from Underutilized Grains: Recent Advances intheir Isolation, Identification, Bioactivity and MolecularAnalysis (pp. 54–75). Bentham Science Publishers. https://doi.org/10.2174/9789815123340123040007

  70. Rjeibi, I., Ncib, S., Ben Saad, A. & Souid, S. (2017). Evaluationof nutritional values, phenolic profile, aroma compoundsand biological properties of Pittosporum tobira seeds. Lipidsin Health and Disease, 16(1), 206. https://doi.org/10.1186/s12944-017-0596-1

  71. Ruan, J.-J., Chen, H., Shao, J.-R., Wu, Q. & Han, X.-Y. (2011).An antifungal peptide from Fagopyrum tataricum seeds.Peptides, 32(6), 1151–1158. https://doi.org/10.1016/j.peptides.2011.03.015

  72. Sandoval-Oliveros, M. R. & Paredes-López, O. (2013). Isolationand Characterization of Proteins from Chia Seeds (Salviahispanica L.). Journal of Agricultural and Food Chemistry,61(1), 193–201. https://doi.org/10.1021/jf3034978

  73. Sarmadi, B. H. & Ismail, A. (2010). Antioxidative peptidesfrom food proteins: A review. Peptides, 31(10), 1949–1956.https://doi.org/10.1016/J.PEPTIDES.2010.06.020

  74. Schoenlechner, R., Siebenhandl, S. & Berghofer, E. (2008).Pseudocereals. Gluten-Free Cereal Products andBeverages, 149–VI, 149-190. https://doi.org/10.1016/B978-012373739-7.50009-5

  75. Scow, D. T., Smith, E. G. & Shaughnessy, A. F. (2003).Combination therapy with ACE inhibitors and angiotensinreceptorblockers in heart failure. American FamilyPhysician, 68(9), 1795–1798.

  76. Segura-Campos, M. R., Chel-Guerrero, L. A., Castellanos-Ruelas, A. F. & Betancur-Ancona, D. A. (2016). ChemicalCharacterization of Mexican Chia (Salvia hispanica L.)Flour. In Functional Properties of Traditional Foods (pp.131–137). Springer US. https://doi.org/10.1007/978-1-4899-7662-8_10

  77. Segura-Campos, M. R., Salazar-Vega, I. M., Chel-Guerrero, L.A. & Betancur-Ancona, D. A. (2013). Biological potentialof chia (Salvia hispanica L.) protein hydrolysates and theirincorporation into functional foods. LWT - Food Scienceand Technology, 50(2), 723–731. https://doi.org/10.1016/j.lwt.2012.07.017

  78. Singh, B. P., Vij, S. & Hati, S. (2014). Functional significanceof bioactive peptides derived from soybean. Peptides, 54,171–179. https://doi.org/10.1016/j.peptides.2014.01.022

  79. Singh, R. K., Chang, H.-W., Yan, D., Lee, K. M., Ucmak, D.,Wong, K., Abrouk, M., Farahnik, B., Nakamura, M., Zhu,T. H., Bhutani, T. & Liao, W. (2017). Influence of diet onthe gut microbiome and implications for human health.Journal of Translational Medicine, 15(1), 73. https://doi.org/10.1186/s12967-017-1175-y

  80. Soriano-Santos, J., Reyes-Bautista, R., Guerrero-Legarreta, I.,Ponce-Alquicira, E., Escalona-Buendía, H. B., Almanza-Pérez, J. C., Díaz-Godínez, G. & Román-Ramos, R.(2015). Dipeptidyl peptidase IV inhibitory activity ofprotein hydrolyzates from Amaranthus hypochondriacusL. Grain and their influence on postprandial glycemia inStreptozotocin-induced diabetic mice. African Journal ofTraditional, Complementary and Alternative Medicines,12(1), 90. https://doi.org/10.4314/ajtcam.v12i1.13

  81. Tao, T., Pan, D., Zheng, Y. Y. & Ma, T. jun. (2019). Optimizationof Hydrolyzed Crude Extract from Tartary BuckwheatProtein and Analysis of Its Hypoglycemic Activity invitro. IOP Conference Series: Earth and EnvironmentalScience, 295(3), 032065. https://doi.org/10.1088/1755-1315/295/3/032065

  82. Tiengo, A., Faria, M. & Netto, F. M. (2009). Characterizationand ACE-Inhibitory Activity of Amaranth Proteins.Journal of Food Science, 74(5), H121–H126. https://doi.org/10.1111/j.1750-3841.2009.01145.x

  83. Tironi, V. A. & Añón, M. C. (2010). Amaranth proteins asa source of antioxidant peptides: Effect of proteolysis.Food Research International, 43(1), 315–322. https://doi.org/10.1016/j.foodres.2009.10.001

  84. Tovar-Pérez, E. G., Guerrero-Legarreta, I., Farrés-González,A. & Soriano-Santos, J. (2009). Angiotensin I-convertingenzyme-inhibitory peptide fractions from albumin1 and globulin as obtained of amaranth grain. FoodChemistry, 116(2), 437–444. https://doi.org/10.1016/j.foodchem.2009.02.062

  85. Tovar-Pérez, E. G., Lugo-Radillo, A. & Aguilera-Aguirre,S. (2019). Amaranth grain as a potential source ofbiologically active peptides: a review of their identification,production, bioactivity, and characterization. Food ReviewsInternational, 35(3), 221–245. https://doi.org/10.1080/87559129.2018.1514625

  86. Udenigwe, C. C. & Aluko, R. E. (2012). Food Protein-DerivedBioactive Peptides: Production, Processing, and PotentialHealth Benefits. Journal of Food Science, 77(1), R11–R24.https://doi.org/10.1111/j.1750-3841.2011.02455.x

  87. Urbizo-Reyes, U., San Martin-González, M. F., García-Bravo, J., López Malo Vigil, A. & Liceaga, A. M.(2019). Physicochemical characteristics of chia seed(Salvia hispanica) protein hydrolysates produced usingultrasonication followed by microwave-assisted hydrolysis.Food Hydrocolloids, 97, 105187. https://doi.org/10.1016/j.foodhyd.2019.105187

  88. Usman, M., Patil, P. J., Mehmood, A., Rehman, A., Shah, H.,Haider, J., Xu, K., Zhang, C. & Li, X. (2022). Comparativeevaluation of pseudocereal peptides: A review of theirnutritional contribution. Trends in Food Science &Technology, 122, 287–313. https://doi.org/10.1016/j.tifs.2022.02.009

  89. Valencia-Chamorro, S. A. (2003). QUINOA. In Encyclopediaof Food Sciences and Nutrition (pp. 4895–4902). Elsevier.https://doi.org/10.1016/B0-12-227055-X/00995-0

  90. Van Lancker, F., Adams, A. & De Kimpe, N. (2011). ChemicalModifications of Peptides and Their Impact on FoodProperties. Chemical Reviews, 111(12), 7876–7903. https://doi.org/10.1021/cr200032j

  91. Velarde-Salcedo, A. J., Barrera-Pacheco, A., Lara-González, S.,Montero-Morán, G. M., Díaz-Gois, A., González de Mejía,E. & Barba de la Rosa, A. P. (2013). In vitro inhibitionof dipeptidyl peptidase IV by peptides derived from thehydrolysis of amaranth (Amaranthus hypochondriacusL.) proteins. Food Chemistry, 136(2), 758–764. https://doi.org/10.1016/j.foodchem.2012.08.032

  92. Vilcacundo, R., Martínez-Villaluenga, C. & Hernández-Ledesma, B. (2017). Release of dipeptidyl peptidaseIV, α-amylase and α-glucosidase inhibitory peptidesfrom quinoa (Chenopodium quinoa Willd.) during invitro simulated gastrointestinal digestion. Journal ofFunctional Foods, 35, 531–539. https://doi.org/10.1016/j.jff.2017.06.024

  93. Vilcacundo, R., Miralles, B., Carrillo, W. & Hernández-Ledesma,B. (2018). In vitro chemopreventive properties of peptidesreleased from quinoa (Chenopodium quinoa Willd.) proteinunder simulated gastrointestinal digestion. Food ResearchInternational, 105, 403–411. https://doi.org/10.1016/j.foodres.2017.11.036

  94. Wali, A., Mijiti, Y., Yanhua, G., Yili, A., Aisa, H. A. & Kawuli, A.(2021). Isolation and Identification of a Novel AntioxidantPeptide from Chickpea (Cicer arietinum L.) Sprout ProteinHydrolysates. International Journal of Peptide Researchand Therapeutics, 27(1), 219–227. https://doi.org/10.1007/s10989-020-10070-2

  95. Wang, C., Yuan, S., Zhang, W., Ng, T. & Ye, X. (2019).Buckwheat Antifungal Protein with Biocontrol Potential ToInhibit Fungal (Botrytis cinerea) Infection of Cherry Tomato.Journal of Agricultural and Food Chemistry, 67(24),6748–6756. https://doi.org/10.1021/acs.jafc.9b01144

  96. Wang, F., Yu, G., Zhang, Y., Zhang, B. & Fan, J. (2015).Dipeptidyl Peptidase IV Inhibitory Peptides Derived fromOat (Avena sativa L.), Buckwheat (Fagopyrum esculentum),and Highland Barley (Hordeum vulgare trifurcatum(L.) Trofim) Proteins. Journal of Agricultural and FoodChemistry, 63(43), 9543–9549. https://doi.org/10.1021/acs.jafc.5b04016

  97. Wang, W. & de Mejía, E. G. (2005). A New Frontier inSoy Bioactive Peptides that May Prevent Age-relatedChronic Diseases. Comprehensive Reviews in FoodScience and Food Safety, 4(4), 63–78. https://doi.org/10.1111/j.1541-4337.2005.tb00075.x

  98. Watanabe, K., Ibuki, A., Chen, Y.-C., Kawamura, Y. &Mitsunaga, T. (2003). Composition of Quinoa ProteinFractions. Nippon Shokuhin Kagaku Kogaku Kaishi, 50(11),546–549. https://doi.org/10.3136/nskkk.50.546

  99. Weidinger, A. & Kozlov, A. (2015). Biological Activities ofReactive Oxygen and Nitrogen Species: Oxidative Stressversus Signal Transduction. Biomolecules, 5(2), 472–484.https://doi.org/10.3390/biom5020472

  100. Zaika, Ye., Kozub, N., Sozinov, I., Bidnyk, G. & Karazhbey,P. (2019). Polymorphism of buckwheat seed storageproteins in cultivar groups, differing by their morphotype.Agricultural Science and Practice, 6(1), 10–17. https://doi.org/10.15407/agrisp6.01.010

  101. Zevallos, V. F., Herencia, I. L., Chang, F., Donnelly, S., Ellis,J. H. & Ciclitira, P. J. (2014). Gastrointestinal Effects ofEating Quinoa (Chenopodium quinoa Willd.) in CeliacPatients. American Journal of Gastroenterology, 109(2),270–278. https://doi.org/10.1038/ajg.2013.431

  102. Zhang, H.-W., Zhang, Y.-H., Lu, M.-J., Tong, W.-J. & Cao, G.-W.(2007). Comparison of Hypertension, Dyslipidaemia andHyperglycaemia Between Buckwheat Seed-Consumingand Non-Consuming Mongolian-Chinese PopulationsIn Inner Mongolia, China. Clinical and ExperimentalPharmacology and Physiology, 34(9), 838–844. https://doi.org/10.1111/j.1440-1681.2007.04614.x

  103. Zhang, T., Dou, W., Zhang, X., Zhao, Y., Zhang, Y., Jiang, L.& Sui, X. (2021). The development history and recentupdates on soy protein-based meat alternatives. Trends inFood Science & Technology, 109, 702–710. https://doi.org/10.1016/J.TIFS.2021.01.060

  104. Zheng, Y., Wang, X., Zhuang, Y., Li, Y., Tian, H., Shi, P. &Li, G. (2019). Isolation of Novel ACE-Inhibitory andAntioxidant Peptides from Quinoa Bran Albumin Assistedwith an in silico Approach: Characterization, In VivoAntihypertension, and Molecular Docking. Molecules,24(24), 4562. https://doi.org/10.3390/molecules24244562

  105. Zhou, X., Wen, L., Li, Z., Zhou, Y., Chen, Y. & Lu, Y. (2015).Advance on the benefits of bioactive peptides frombuckwheat. Phytochemistry Reviews, 14(3), 381–388.https://doi.org/10.1007/s11101-014-9390-0

  106. Zhou, Y., Jiang, Y., Shi, R., Chen, Z., Li, Z., Wei, Y. & Zhou,X. (2020). Structural and antioxidant analysis of Tartarybuckwheat (Fagopyrum tartaricum Gaertn.) 13S globulin.Journal of the Science of Food and Agriculture, 100(3),1220–1229. https://doi.org/10.1002/jsfa.10133

  107. Zhu, F. (2016). Chemical composition and health effects ofTartary buckwheat. Food Chemistry, 203, 231–245. https://doi.org/10.1016/J.FOODCHEM.2016.02.050

  108. Zhu, F. (2021). Buckwheat proteins and peptides: Biologicalfunctions and food applications. Trends in Food Science& Technology, 110, 155–167. https://doi.org/10.1016/J.TIFS.2021.01.081




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

TIP Rev Esp Cienc Quim Biol. 2023;26