medigraphic.com
SPANISH

Revista Latinoamericana de Simulación Clínica

ISSN 2683-2348 (Electronic)
Federación Latinoamericana de Simulación Clínica y Seguridad del Paciente
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
    • Send manuscript
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2024, Number 2

<< Back Next >>

Simulación Clínica 2024; 6 (2)

Development and validation of an inanimate model of renal puncture: an economical, reproducible, and valuable alternative in clinical simulation

Astroza-Eulufi G, Hassan-Gonzales G, Fuentes-Espinoza A, Bravo-Izurieta JC, Manterola-Flores C, Gargiullo-Velasquez F, Brusoni-Costoya S
Full text How to cite this article 10.35366/117465

DOI

DOI: 10.35366/117465
URL: https://dx.doi.org/10.35366/117465

Language: Spanish
References: 16
Page: 72-78
PDF size: 623.68 Kb.


Key words:

percutaneous puncture, ultrasonography, anatomical models, medical education, method validation.

ABSTRACT

Introduction: surgical education has prioritized simulated practices; however, their use in urology remains limited. Objective: develop and validate an affordable ultrasound-guided inanimate model for renal puncture practice. Material and methods: simulation model for ultrasound-guided renal puncture was created using 3D printing and silicone filling, costing USD 625. Puncture procedures were performed using a multifrequency curved transducer by two groups: group 1, experts with over 60 prior renal punctures, group 2, consisting of inexperienced general practitioners. Success was defined as completion within 10 minutes. Construct validity was evaluated by analyzing differences in puncture attempts, success rates, and time to access the collecting system between the groups. Content validation involved experts rating the model's utility and realism on a 5-point scale. Statistical analysis was performed using Deltoid R software, employing Kruskal-Wallis and Fisher´s tests. Results: experts achieved 100% successful, while only 30.7% of the inexperienced group (p < 0.05). Experts required an average of 4.2 punctures compared to novices' 7.4 punctures (p < 0.2). Experts averaged 227 seconds per procedure, while novices averaged 535 seconds (p < 0.05). Experts rated the model's utility at a median of 4 points (SD 0.2) and its realism at 3.5 points (SD 0.49). Conclusions: this study presents an innovative and cost-effective ultrasound-guided renal puncture simulation model, validated for content and construct validity.


REFERENCES

  1. Lanzarini SE, Schonstedt PV, Abedrapo MM, Yarmuch GJ, Csendes J A, Rodriguez NA. Simulación: una herramienta útil en la formación quirúrgica moderna. Rev Chil Cir. 2008; 60 (2): 167-169. doi: 10.4067/s0718-40262008000200016.

  2. Neira SR, Varas CJ, Astroza EG. Validación de un modelo simulado inanimado basado en impresión 3D de ureterorrenoscopía flexible. Rev Cir. 2020; 72 (6): 567-572. doi: 10.35687/s2452-45492020006623.

  3. Brewin J, Ahmed K, Challacombe B. Actualización y revisión de la simulación en la formación urológica. Int J Surg. 2014; 12 (2): 103-108. doi: 10.1016/j.ijsu.2013.11.012.

  4. Aydin A, Shafi AM, Shamim Khan M, Dasgupta P, Ahmed K. Current status of simulation and training models in urological surgery: a systematic review. J Urol. 2016; 196 (2): 312-320. doi: 10.1016/j.juro.2016.01.131.

  5. Peña MY, Peña PS, Chaviano CM. Complicaciones frecuentes en pacientes con nefrolitotomía percutánea. 2022; 26 (4). [Internet]. [Citado 2023 Septiembre 19]. Disponible en: https://medicentro.sld.cu/index.php/medicentro/article/view/3811/3013

  6. Noureldin YA, Andonian S. Simulation for percutaneous renal access: where are we? J Endourol. 2017; 31 (S1): S10-S19. doi: 10.1089/end.2016.0587.

  7. Stern J, Zeltser IS, Pearle MS. Percutaneous renal access simulators. J Endourol. 2007; 21 (3): 270-273. doi: 10.1089/end.2007.9981.

  8. Zavando MD, Suazo GI, Manterola DC. Validez en la investigación imaginológica. Rev Chil Radiol. 2010; 16 (2): 75-79. doi: 10.4067/s0717-93082010000200007.

  9. Zhang Y, Ou TW, Jia JG, Gao W, Cui X, Wu JT, Wang G. Novel biologic model for percutaneous renal surgery learning and training in the laboratory. Urology. 2008; 72 (3): 513-516. doi: 10.1016/j.urology.2008.05.016.

  10. Allen D, O'Brien T, Tiptaft R, Glass J. Defining the learning curve for percutaneous nephrolithotomy. J Endourol. 2005; 19 (3): 279-282. doi: 10.1089/end.2005.19.279.

  11. Aedo R, Kerkebe M. Simulación en urología. Revista Chilena de Urología. 2018; 83 (3): 14-23.

  12. Damia O, Lola M, Schiappapietra J. Nefrostomía percutánea. Rev Arg Uro Nefro. 1983; 49 (2): 4-5.

  13. Comparison between Ultrasound and Fluoroscopy-guided Percutaneous Nephrolithotomy (PCNL) at Raden Mattaher Jambi Hospital. African Journal of Urology. 2023; 29 (1). doi: 10.1186/s12301-023-00347-5.

  14. Schout B, Dolmans V, Bemelmans B, Schoot D, Scherpbier A, Hendrikx A. Teaching diagnostic and therapeutic procedures of bladder pathology using a newly developed pig bladder model. J Endourol. 2008; 22 (11): 2547-2553. doi: 10.1089/end.2008.0316.

  15. Zhang Y, Yu CF, Jin SH, Li NC, Na YQ. Validation of a novel non-biological bench model for the training of percutaneous renal access. Int Braz J Urol. 2014; 40 (1): 87-92. doi: 10.1590/s1677-5538.ibju.2014.01.13.

  16. Gadzhiev NK, Mishchenko AA, Britov VP, Khrenov AM, Gorelov DS, Obidnyak VM, et al. Creation of a training simulator model for practising puncture of the kidney calyceal system under ultrasound control. 2021; 9 (1): 22-31. (En ruso). doi: 10.21886/2308-6424-2021-9-1-22-31.




Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Table 1

2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Simulación Clínica. 2024;6