medigraphic.com
SPANISH

Revista Biomédica

Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2025, Number 1

<< Back Next >>

Rev Biomed 2025; 36 (1)

Between stimuli and responses: behavioral models of anxiety in animals. A descriptive review

Guerrero-Solano JA, Flores-Bazán T, Mendoza-Mojica SA, Casco-Gallardo KI, Olivo-Ramírez DP
Full text How to cite this article

Language: English
References: 35
Page: 23-31
PDF size: 167.13 Kb.


Key words:

Anxiety, animal models, preclinical, neurobiology.

ABSTRACT

Anxiety, as an adaptive emotion, can motivate individuals to seek solutions and improve their performance, but when it reaches clinically significant levels, it significantly affects daily life. This descriptive review article narrates the importance of studying anxiety through animal models at the preclinical level, highlighting its relevance in understanding the neurobiology and development of effective treatments. A search for updated scientific information was conducted in relevant health-related databases from the last years, including PubMed, Web of Science, Embase, SciELO, Cochrane Library, and Google Scholar, among others. It discusses experimental models of conditioned and unconditioned responses used to replicate characteristics of these disorders in laboratory animals, which must possess face, construct, and predictive validity. It emphasized the limitation of these models in fully replicating the complete human experience of anxiety and the physiological and behavioral differences between species. Despite their limitations, animal models remain valuable tools for understanding and treating anxiety, although more research is needed to improve their validity and clinical applicability.


REFERENCES

  1. Kenwood MM, Kalin NH, Barbas H. Correction: Theprefrontal cortex, pathological anxiety, and anxietydisorders. Neuropsychopharm. 2022;47(5):1141. http://dx.doi.org/10.1038/s41386-021-01216-x

  2. Morales-Rodríguez M, Bedolla-Maldonado LC.Depresión y Ansiedad en Adolescentes: El papel de laImplicación Paterna. RESCAyGdI. 2022;9(17).

  3. Chand SP, Marwaha R, Bender RM. Anxiety (Nursing).StatPearls Publishing, Treasure Island (FL); 2023. http://europepmc.org/abstract/MED/33760520

  4. Ball TM, Gunaydin LA. Measuring maladaptiveavoidance: from animal models to clinical anxiety.Neuropsychopharm. 2022;47(5):978-86. http://dx.doi.org/10.1038/s41386-021-01263-4 .

  5. Penninx BW, Pine DS, Holmes EA, Reif A. Anxietydisorders. Lancet. 2021;397(10277):914-27. http://dx.doi.org/10.1016/S0140-6736(21)00359-7

  6. Kalin NH. Novel Insights Into Pathological Anxietyand Anxiety-Related Disorders. Am J Psych.2020;177(3):187-9. http://dx.doi.org/10.1176/appi.ajp.2020.20010057

  7. Grant KW. Fundamentals of Psychological Diagnosis(Volume 2): DSM-5-TR Essentials for Clinicians:Kevin William Grant; 2023. https://opentext.wsu.edu/abnormal-psych/

  8. Harro J. Psychiatric Vulnerability, Mood, and AnxietyDisorders: Tests and Models in Mice and Rats: SpringerNature; 2022. http://dx.doi.org/10.1007/978-1-0716-2748-8

  9. Campos AC, Fogaça MV, Aguiar DC, GuimarãesFS. Animal models of anxiety disorders and stress.Br J Psiqu. 2013;35 Suppl 2:S101-11. http://dx.doi.org/10.1590/1516-4446-2013-1139

  10. Mineka S. Animal models of anxiety-based disorders:Their usefulness and limitations. Anxiety and theanxiety disorders: Routledge; 2019. p. 199-244.

  11. Gencturk S, Unal G. Rodent tests of depression andanxiety: Construct validity and translational relevance.Cogn Affect Behav Neurosci. 2024. http://dx.doi.org/10.3758/s13415-024-01171-2

  12. Schaffner KF. A Comparison of Two NeurobiologicalModels of Fear and Anxiety: A “Construct Validity”Application? Perspect Psychol Sci. 2020;15(5):1214-27.http://dx.doi.org/10.1177/1745691620920860

  13. Kraeuter AK, Guest PC, Sarnyai Z. The Elevated PlusMaze Test for Measuring Anxiety-Like Behavior inRodents. Methods Mol Biol. 2019;1916:69-74. http://dx.doi.org/10.1007/978-1-4939-8994-2_4

  14. Nachiappan KR, Sadasivam B, Najmi A, K C. Evaluationof the Anxiolytic Effect of Ramelteon in Various RatModels of Anxiety. Cureus. 2023;15(5):e38717. http://dx.doi.org/10.7759/cureus.38717

  15. Ari C, D’Agostino DP, Diamond DM, Kindy M, ParkC, Kovács Z. Elevated Plus Maze Test Combined withVideo Tracking Software to Investigate the AnxiolyticEffect of Exogenous Ketogenic Supplements. J Vis Exp.2019(143). http://dx.doi.org/10.3791/58396-v

  16. Rosso M, Wirz R, Loretan AV, Sutter NA, Pereira daCunha CT, Jaric I, et al. Reliability of common mousebehavioural tests of anxiety: A systematic review andmeta-analysis on the effects of anxiolytics. NeurosciBiobehav Rev. 2022;143:104928. http://dx.doi.org/10.1016/j.neubiorev.2022.104928

  17. Miyazaki S, Fujita Y, Oikawa H, Takekoshi H, Soya H,Ogata M, et al. Combination of syringaresinol-di-O-β-D-glucoside and chlorogenic acid shows behavioralpharmacological anxiolytic activity and activationof hippocampal BDNF-TrkB signaling. Sci Rep.2020;10(1):18177. http://dx.doi.org/10.1038/s41598-020-74866-4

  18. Snyder CN, Brown AR, Buffalari D. Similar tests ofanxiety-like behavior yield different results: comparisonof the open field and free exploratory rodent procedures.Physiol Behav. 2021;230:113246. http://dx.doi.org/10.1016/j.physbeh.2020.113246

  19. Campos-Cardoso R, Godoy LD, Lazarini-LopesW, Novaes LS, Dos Santos NB, Perfetti JG, et al.Exploring the light/dark box test: Protocols andimplications for neuroscience research. J NeurosciMethods. 2023;384:109748. http://dx.doi.org/10.1016/j.jneumeth.2022.109748

  20. Jarrar Q, Ayoub R, Alhussine K, Goh KW, MoshawihS, Ardianto C, et al. Prolonged Maternal SeparationReduces Anxiety State and Increases CompulsiveBurying Activity in the Offspring of BALB/c Mice.J Pers Med. 2022;12(11). http://dx.doi.org/10.3390/jpm12111921

  21. Stieger B, Palme R, Kaiser S, Sachser N, Richter SH.When left is right: The effects of paw preference trainingon behaviour in mice. Behav Brain Res. 2022;430:113929.http://dx.doi.org/10.1016/j.bbr.2022.113929

  22. Khurana K, Bansal N. Lacidipine attenuates caffeineinducedanxiety-like symptoms in mice: Role ofcalcium-induced oxido-nitrosative stress. PharmacolRep. 2019;71(6):1264-72. http://dx.doi.org/10.1016/j.pharep.2019.07.008

  23. Kwee CMB, Leen NA, Van der Kamp RC, Van LissaCJ, Cath DC, Groenink L, et al. Anxiolytic effects ofendocannabinoid enhancing compounds: A systematicreview and meta-analysis. Eur Neuropsychopharm.2023;72:79-94. http://dx.doi.org/10.1016/j.euroneuro.2023.04.001

  24. Gadotti VM, Zamponi GW. Anxiolytic effects of theflavonoid luteolin in a mouse model of acute colitis.Mol Brain. 2019;12(1):114. http://dx.doi.org/10.1186/s13041-019-0539-z

  25. Zhao H, Zhou M, Liu Y, Jiang J, Wang Y. Recentadvances in anxiety disorders: Focus on animal modelsand pathological mechanisms. Animal model ExpMed. 2023;6(6):559-72. http://dx.doi.org/10.1002/ame2.12360

  26. Farzan M, Farzan M, Amini-Khoei H, Shahrani M, BijadE, Anjomshoa M, et al. Protective effects of vanillic acidon autistic-like behaviors in a rat model of maternalseparation stress: Behavioral, electrophysiological,molecular and histopathological alterations. IntImmunopharmacol. 2023;118:110112. http://dx.doi.org/10.1016/j.intimp.2023.110112

  27. Dixit PV, Sahu R, Mishra DK. Marble-burying behaviortest as a murine model of compulsive-like behavior. JPharmacol Toxicol Methods. 2020;102:106676. http://dx.doi.org/10.1016/j.vascn.2020.106676

  28. Costanzi M, Saraulli D, Cannas S, D’Alessandro F,Florenzano F, Rossi-Arnaud C, et al. Fear but notfright: re-evaluating traumatic experience attenuatesanxiety-like behaviors after fear conditioning. Front.Behav. Neurosci. 2014;8:279. http://dx.doi.org/10.3389/fnbeh.2014.00279

  29. Wu PY, Yang X, Wright DE, Christianson JA. Foot shockstress generates persistent widespread hypersensitivityand anhedonic behavior in an anxiety-prone strainof mice. Pain. 2020;161(1):211-9. http://dx.doi.org/10.1097/j.pain.0000000000001703

  30. Kasahara K, Hashimoto S, Hattori T, Kawasaki K,Tsujita R, Nakazono O, et al. The effects of AP521, anovel anxiolytic drug, in three anxiety models and onserotonergic neural transmission in rats. J PharmacolSci. 2015;127(1):109-16. http://dx.doi.org/10.1016/j.jphs.2014.11.008

  31. Kaur S, Singh A, Singh H, Singh Bedi PM, Nepali K,Singh B, et al. Protective effect of Grewia asiatica leavesextract in animal models of epilepsy and anxiety. JAyurveda Integr Med. 2022;13(3):100616. http://dx.doi.org/10.1016/j.jaim.2022.100616

  32. Tsoukalas D, Zlatian O, Mitroi M, Renieri E, Tsatsakis A,Izotov BN, et al. A Novel Nutraceutical Formulation CanImprove Motor Activity and Decrease the Stress Levelin a Murine Model of Middle-Age Animals. J Clin Med.2021;10(4). http://dx.doi.org/10.3390/jcm10040624

  33. Zoladz PR, Del Valle CR, Smith IF, Goodman CS,Dodson JL, Elmouhawesse KM, et al. GlucocorticoidAbnormalities in Female Rats Exposed to a Predator-Based Psychosocial Stress Model of PTSD. Front. Behav.Neurosci. 2021;15:675206. http://dx.doi.org/10.3389/fnbeh.2021.675206

  34. Du CX, Guo Y, Zhang QJ, Zhang J, Lv SX, Liu J.Involvement of prelimbic 5-HT(7) receptors in theregulation of anxiety-like behaviors in hemiparkinsonianrats. Neurol Res. 2018;40(10):847-55. http://dx.doi.org/10.1080/01616412.2018.1493962

  35. Harrison DJ, Creeth HDJ, Tyson HR, Boque-Sastre R,Isles AR, Palme R, et al. Unified Behavioral Scoring forPreclinical Models. Front Neurosci. 2020;14:313. http://dx.doi.org/10.3389/fnins.2020.00313




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Biomed. 2025;36