medigraphic.com
SPANISH

Revista Cubana de Cardiología y Cirugía Cardiovascular

ISSN 1561-2937 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2022, Number 4

<< Back Next >>

Rev Cubana Cardiol Cir Cardiovasc 2022; 28 (4)

Glyflozines: Antidiabetics with cardiorenal benefit

Jerez CAM, Castelo VX, Heres ÁF, Galán ML
Full text How to cite this article

Language: Spanish
References: 21
Page: 1-5
PDF size: 301.45 Kb.


Key words:

sodium-glucose cotransporter, diabetes, cardiovascular clinical trials, heart failure, gliflozins, inhibitors, safety profile.

ABSTRACT

Introduction: The results of cardiovascular safety trials of sodium-glucose cotransporter type 2 inhibitors, generically called gliflozins, evaluated and used as antidiabetics, have, in turn, prompted randomized clinical trials in the therapeutics of heart failure and diabetic nephropathy. Objective: To review the results of clinical trials performed with glyflozines; as well as their main adverse reactions, their mechanisms of action and their place in cardiovascular and renal therapeutics. Methods: A review of the updated national and international literature was carried out. A search was made in Google Scholar and open access articles were consulted in the PubMed and SciELO databases. The following terms were used for the search: cardiovascular, diabetes, heart failure, gliflozin, sodium-glucose cotransporter type 2 inhibitors; according to the Health Sciences descriptor. Conclusions: Some gliflozins reduce major cardiovascular events, hospitalizations due to heart failure, and impaired renal function, independent of glycemic control. The individualization of each patient and the benefit-risk of treatment with gliflozins should always be assessed.


REFERENCES

  1. Braunwald E. SGLT2 inhibitors: the statins of the 21st century. Eur Heart J. 2022; 43(11):1029-30. DOI: https://doi.org/10.1093/eurheartj/ehab765

  2. Tamargo J. Sodium–glucose Cotransporter 2 Inhibitors in Heart Failure: Potential Mechanisms of Action, Adverse Effects and Future Developments. Eur Cardio. 2019; 14(1): 23-32. DOI: https://doi.org/10.15420/ecr.2018.34.2

  3. Makarova E, Górnas P, Konrade I, Tirzite D, Cirule H, Gulbe A, et al. Acute anti-hyperglycaemic effects of an unripe apple preparation containing phlorizin in healthy volunteers: a preliminary study. J Sci Food Agric. 2015; 95(3): 560-8. DOI: https://doi.org/10.1002/jsfa.6779

  4. Galindo M, Carrillo L, Cortázar F, Aisa A, Rodríguez F, Díaz E. Inhibidores del transportador de sodio-glucosa tipo 2 (SGLT2) en el tratamiento de pacientes con diabetes mellitus: el control glucémico a través de la glucosuria. Med Int Mex. 2013 [acceso 2/12/2019];29:399-403. Disponible en: https://www.medigraphic.com/pdfs/medintmex/mim-2013/mim134i.pdf

  5. González V. Gliflozinas: más que antidiabéticos orales. Una breve revisión de la literatura. Rev Urug Cardiol. 2021;36:e401. DOI: https://doi.org/10.29277/cardio.36.2.8

  6. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;357(1):100. DOI: https://doi.org/10.1056/NEJMoa072761

  7. Zinman BB, Wanner C, Lachin CM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015; 373:2117–28. DOI: https://doi.org/10.1056/NEJMoa1504720.

  8. McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martínez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019; 381:1995–2008. DOI: https://doi.org/10.1056/NEJMoa1911303

  9. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020; 383:1413–24. DOI: https://doi.org/10.1056/NEJMoa2022190 .

  10. Bonnet F, Scheen AJ. Effects of SGLT2 inhibitors on systemic and tissue low-grade inflammation: The potential contribution to diabetes complications and cardiovascular disease. Diabetes Metab. 2018;44:457–64. DOI: https://doi.org/10.1016/j.diabet.2018.09.005.

  11. Prattichizzo F, De Nigris V, Micheloni S, La Sala L, Ceriello A. Increases in circulating levels of ketone bodies and cardiovascular protection with SGLT2 inhibitors: Is low-grade inflammation the neglected component? Diabetes Obes Metab. 2018; 20:2515–22. DOI: https://doi.org/10.1111/dom.

  12. Kolijn D, Pabel S, Tian Y, Lódi M, Herwig M, Carrizzo A, et al. Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation. Cardiovasc Res. 2021;21;117(2):495-507. DOI: https://doi.org/10.1093/cvr/cvaa123

  13. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. CANVAS Program Collaborative Group. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644-57. DOI: https://doi.org/10.1056/NEJMoa1611925

  14. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. DECLARE–TIMI 58 Investigators. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2019;380:347–57. DOI: https://doi.org/10.1056/NEJMoa1812389.

  15. Voors AA, Angermann CE, Teerlink JR, Collins SP, Kosiborod M, Biegus J, et al. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: a multinational randomized trial. Nat Med. 2022;28(3):568-74. DOI: https://doi.org/10.1038/s41591-021-01659-1

  16. Butler J, Filippatos G, Siddiqi TJ, Brueckmann M, Böhm M, Chopra VK, et al. Empagliflozin, Health Status, and Quality of Life in Patients With Heart Failure and Preserved Ejection Fraction: The EMPEROR-Preserved Trial. Circulation. 2022 J;145(3):184-93. DOI: https://doi.org/10.1161/CIRCULATIONAHA.121.057812

  17. Heerspink HJL, Cherney D, Postmus D, Stefánsson BV, Chertow GM, Dwyer JP, et al. A pre-specified analysis of the Dapagliflozin and Prevention of Adverse Outcomes in Chronic Kidney Disease (DAPA-CKD) randomized controlled trial on the incidence of abrupt declines in kidney function. Kidney Int. 2022;101(1):174-84. DOI: https://doi.org/10.1016/j.kint.2021.09.005

  18. Oshima M, Jardine MJ, Agarwal R, Bakris G, Cannon CP, Charytan DM, et al. Insights from CREDENCE trial indicate an acute drop in estimated glomerular filtration rate during treatment with canagliflozin with implications for clinical practice. Kidney Int. 2021 [acceso 26/02/2022];99(4):999-1009]. Disponible en: https://www.kidney-international.org/article/S0085-2538(20)31413-7/fulltext

  19. Pasternak B, Wintzell V, Melbye M, Eliasson B, Svensson AM, Franzen S, et al. Use of sodium glucose cotransporter 2 inhibitors and risk of serious renal events: Scandinavian cohort study. BMJ. 2020 [acceso 10/03/2022];369:1186. Disponible en: https://www.bmj.com/content/bmj/369/bmj.m1186.full.pdf

  20. González I, Monkowski M, Forrester M, Trimarchi H. Inhibidores de los Sglt2: Efectos renales, extrarrenales y nuevas perspectivas. Rev Nefrol Arg. 2020 [acceso 23/12/2021];18(2):1-16. Disponible en: http://www.nefrologiaargentina.org.ar/numeros/2020/volumen18_2/ART4-JUNIO.pdf

  21. Jiménez OE, Navarro C, Urieta L. Seguridad de los iSGLT-2. Revisión de las reacciones adversas notificadas a nivel nacional. Semergen. 2018 [acceso 10/03/2022];44(1):23-9. Disponible en: https://pesquisa.bvsalud.org/portal/resource/pt/ibc-171184




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Cubana Cardiol Cir Cardiovasc. 2022;28