2025, Number 1
<< Back Next >>
Acta Med 2025; 23 (1)
A new appraisal: type 3 diabetes, a narrative review
Córdova PVH, Zabaneh CV, Rodríguez WFL, Cabrera JR, González AR, Cantú GA, Gutiérrez BD, Aguilar DM
Language: Spanish
References: 62
Page: 52-58
PDF size: 191.55 Kb.
ABSTRACT
This review article explores the relationship between insulin resistance in the central nervous system (CNS) and its impact on neurodegenerative diseases, particularly in type 2 diabetes and Alzheimer's disease spectrum. Through an analysis of key molecular pathways involved, such as PI3K/Akt, AMPK, and JNK, the article describes how these metabolic alterations impair neuroplasticity and promote neuronal damage. It also addresses the role of mitochondrial dysfunction and chronic proinflammatory states, which create oxidative stress environments that contribute to the buildup of toxic proteins, accelerating neurodegeneration. Additionally, the article examines emerging diagnostic methods including plasma and CSF biomarkers, qEEG, fMRI, and MRS, which allow early identification of connectivity alterations and metabolic changes in the brain. These methods provide early detection and intervention opportunities in initial stages, with significant clinical and preventive implications. Finally, lifestyle-based interventions and potential therapeutic approaches, such as intranasal insulin and inflammation modulators, are discussed to slow cognitive decline progression and improve the quality of life in high-risk patients.
REFERENCES
Brüning J, Gautam D, Burks D et al. Role of brain insulin receptor in control of body weight and reproduction. Science. 2000; 289: 2122-2125.
Banks W, Owen J, Erickson M. Insulin in the brain: there and back again. Pharmacol Ther. 2012; 136: 82-93.
Grillo C, Woodruff J, Macht V, Reagan L. Insulin resistance and hippocampal dysfunction: Disentangling peripheral and brain causes from consequences. Exp Neurol. 2019; 318: 71-77.
Ono H. Molecular mechanisms of hypothalamic insulin resistance. Int J Mol Sci. 2019; 20 (6): 1317.
Zhao W, Townsend M. Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer's disease. Biochim Biophys Acta. 2009; 1792 (5): 482-496.
Kim B, Feldman E. Insulin resistance in the nervous system. Trends Endocrinol Metab. 2012; 23 (3): 133-141.
Zhou S, Tu L, Chen W, Yan G, Guo H, Wang X et al. Alzheimer's disease, a metabolic disorder: Clinical advances and basic model studies (Review). Exp Ther Med. 2023 ;27 (2): 63.
Boles A, Kandimalla R, Reddy PH. Dynamics of diabetes and obesity: Epidemiological perspective. Biochim Biophys Acta Mol Basis Dis. 2017; 1863 (5): 1026-1036.
de La Monte SM, Wands JR. Alzheimer's disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol. 2008; 2 (6): 1101-1113.
Formiga F, Pérez-Maraver M. Diabetes mellitus tipo 3. ¿El renacer de la insulina inhalada? Endocrinol Nutr. 2014; 61 (4): 173-175.
González A, Calfío C, Churruca M, Maccioni RB. Glucose metabolism and AD: evidence for a potential diabetes type 3. Alzheimers Res Ther [Internet]. 2022; 14 (1): 56. Available in: https://doi.org/10.1186/s13195-022-00996-8
Jha SK, Jha NK, Kumar D, Ambasta RK, Kumar P. Linking mitochondrial dysfunction, metabolic syndrome and stress signaling in Neurodegeneration. Biochim Biophys Acta Mol Basis Dis [Internet]. 2017; 1863 (5): 1132-1146. Available in: https://doi.org/10.1016/j.bbadis.2016.06.015
Kandimalla R, Thirumala V, Reddy PH. Is Alzheimer's disease a type 3 diabetes? A critical appraisal. Biochim Biophys Acta Mol Basis Dis [Internet]. 2017; 1863 (5): 1078-1089. Available in: https://doi.org/10.1016/j.bbadis.2016.08.018
Liu Q, Wang Z, Cao J, Dong Y, Chen Y. The role of insulin signaling in hippocampal-related diseases: a focus on Alzheimer's disease. Int J Mol Sci [Internet]. 2022; 23 (22): 14417. Available in: https://doi.org/10.3390/ijms232214417
Messier C, Teutenberg K. The role of insulin, insulin growth factor, and insulin-degrading enzyme in brain aging and Alzheimer's disease. Neural Plast. 2005; 12 (4): 311-328.
Michailidis M, Moraitou D, Tata DA, Kalinderi K, Papamitsou T, Papaliagkas V. Alzheimer's disease as type 3 diabetes: common pathophysiological mechanisms between Alzheimer's disease and type 2 diabetes. Int J Mol Sci [Internet]. 2022; 23 (5): 2687. Available in: https://doi.org/10.3390/ijms23052687
Mitra S, Fernandez-Del-Valle M, Hill JE. The role of MRI in understanding the underlying mechanisms in obesity-associated diseases. Biochim Biophys Acta Mol Basis Dis [Internet]. 2017; 1863 (5): 1115-1131. Available in: https://doi.org/10.1016/j.bbadis.2016.09.008
Mittal K, Mani RJ, Katare DP. Type 3 diabetes: cross talk between differentially regulated proteins of type 2 diabetes mellitus and Alzheimer's disease. Sci Rep [Internet]. 2016; 6. Available in: https://doi.org/10.1038/srep25589
Nguyen TT, Ta QTH, Nguyen TKO, Nguyen TTD, Giau VV. Type 3 diabetes and its role implications in Alzheimer's disease. Int J Mol Sci. 2020; 21 (9): 3165. doi: 10.3390/ijms21093165.
Nisar O, Pervez H, Mandalia B, Waqas M, Sra HK. Type 3 diabetes mellitus: a link between Alzheimer's disease and type 2 diabetes mellitus. Cureus [Intermet]. 2020; 12 (11): e11703. Available in: https://doi.org/10.7759/cureus.11703
Priyadarshini M, Kamal MA, Greig NH, Reale M, Abuzenadah AM, Chaudhary AG et al. Alzheimer's disease and type 2 diabetes: exploring the association to obesity and tyrosine hydroxylase. CNS Neurol Disord Drug Targets. 2012; 11 (4): 482-489.
Pugazhenthi S, Qin L, Reddy PH. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis. 2017; 1863 (5): 1037-1045. doi: 10.1016/j.bbadis.2016.04.017.
Ramalingam L, Menikdiwela K, LeMieux M, Dufour JM, Kaur G, Kalupahana N et al. The renin angiotensin system, oxidative stress and mitochondrial function in obesity and insulin resistance. Biochim Biophys Acta Mol Basis Dis. 2017; 1863 (5): 1106-1114. doi: 10.1016/j.bbadis.2016.07.019.
Rorbach-Dolata A, Piwowar A. Neurometabolic evidence supporting the hypothesis of increased incidence of type 3 diabetes mellitus in the 21st century. Biomed Res Int. 2019; 2019: 1435276. doi: 10.1155/2019/1435276.
Verma SK, Garikipati VNS, Kishore R. Mitochondrial dysfunction and its impact on diabetic heart. Biochim Biophys Acta Mol Basis Dis. 2017; 1863 (5): 1098-1105. doi: 10.1016/j.bbadis.2016.08.021.
Woodfield A, Porter T, Gilani I, Noordin S, Li QX, Collins S et al. Insulin resistance, cognition and Alzheimer's disease biomarkers: Evidence that CSF Aβ42 moderates the association between insulin resistance and increased CSF tau levels. Neurobiol Aging. 2022; 114: 38-48. doi: 10.1016/j.neurobiolaging.2022.03.004.
Beal MF, Lin MT. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006; 443 (7113): 787-795. doi: 10.1038/nature05292.
Mancuso M, Coppede F, Migliore L, Murri L. Mitochondrial dysfunction, oxidative stress and neurodegeneration. J Alzheimers Dis. 2006; 10 (1): 59-73. doi: 10.3233/JAD-2006-10109.
Rose J, Brian C, Woods J, Pappa A, Panayiotidis MI. Mitochondrial dysfunction in glial cells: Implications for neuronal homeostasis and survival. Toxicology [Internet]. 2017; 391: 109-115. Available in: https://doi.org/10.1016/j.tox.2017.06.007
Picca A, Calvani R, Coelho-Junior HJ, Landi F, Marzetti E. Mitochondrial dysfunction, oxidative stress, and neuroinflammation: Intertwined roads to neurodegeneration. Antioxidants [Internet]. 2020; 9 (8): 647. Available in: https://doi.org/10.3390/antiox9080647
Islam MT. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res [Internet]. 2017; 39 (1): 73-82. Available in: https://doi.org/10.1080/01616412.2016.1251711
Dagda RK. Role of mitochondrial dysfunction in degenerative brain diseases: An overview. Brain Sci [Internet]. 2018; 8 (10): 178. Available in: https://doi.org/10.3390/brainsci8100178
Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA et al. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother [Internet]. 2015; 74: 101-110. Available in: https://doi.org/10.1016/jbiopha.2015.07.025
Kurochkin IV, Guarnera E, Berezovsky IN. Insulin-degrading enzyme in the fight against Alzheimer's disease. Trends Pharmacol Sci [Internet]. 2018; 39 (1): 49-58. Available in: https://doi.org/10.1016/j.tips.2017.10.008.
Lecca D, Jung YJ, Scerba MT, Hwang I, Kim YK, Kim S et al. Role of chronic neuroinflammation in neuroplasticity and cognitive function: A hypothesis. Alzheimers Dement. 2022; 18 (11): 2327-2340. doi: 10.1002/alz.12610.
Pivovarova O, Hohn A, Grune T, Pfeiffer AFH. Insulin-degrading enzyme: new therapeutic target for diabetes and Alzheimer's disease? Ann Med. 2016; 48 (8): 614-624. doi: 10.1080/07853890.2016.1197416
Qiu WQ, Folstein MF. Insulin, insulin-degrading enzyme and amyloid-β peptide in Alzheimer's disease: Review and hypothesis. Neurobiol Aging. 2006; 27 (2): 190-198. doi: 10.1016/j.neurobiolaging.2005.01.021.
Singhal G, Baune BT. Microglia: an interface between the loss of neuroplasticity and depression. Front Cell Neurosci. 2017; 11: 270. doi: 10.3389/fncel.2017.00270.
Biessels GJ, Reagan LP. Hippocampal insulin resistance and cognitive dysfunction. Nat Rev Neurosci. 2015; 16 (11): 660-671. doi: 10.1038/nrn4019.
Navarro A, Boveris A. Brain mitochondrial dysfunction in aging, neurodegeneration, and Parkinson's disease. Front Aging Neurosci. 2010; 2: 34. doi: 10.3389/fnagi.2010.00034.
Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment. Arch Neurol. 2013; 69 (1): 29-38. doi: 10.1001/archneurol.2011.233.
Cassani R, Estarellas M, San-Martin R, Fraga FJ, Falk TH. Systematic review on resting-state EEG for Alzheimer's disease diagnosis and progression assessment. Dis Markers. 2018; 2018: 5174815. doi: 10.1155/2018/5174815.
Blennow K, Zetterberg H. Biomarkers for Alzheimer's disease: current status and prospects for the future. J Intern Med. 2018; 284 (6): 643-663. doi: 10.1111/joim.12820.
Eickhoff SB, Laird AR, Fox PT, Lancaster JL, Fox PM. Functional brain connectivity using fMRI in aging and Alzheimer's disease. J Alzheimers Dis. 2018; 60 (s1): S109-S120. doi: 10.3233/JAD-170691.
Rae C, Scott RB, Thompson CH, Kemp GJ, Dumughn I, Styles P et al. Is pH a biomarker in ALS? Brain. 2012; 135 (9): 2632-2643. doi: 10.1093/brain/aws176.
Butterfield DA, Di Domenico F, Barone E. Elevated risk of type 2 diabetes for development of Alzheimer disease: A key role for oxidative stress in brain. Biochim Biophys Acta. 2020; 1866 (2): 1658-1668.
Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther. 2018; 151: 7-25.
McEwen BS, Nasca C, Gray JD. Stress effects on neuronal structure: Hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology. 2019; 45 (1): 4-7.
Herman M, Miller R, Barnett S. EEG biomarkers in Alzheimer's disease: Patterns and implications. J Neural Sci. 2022; 45 (3): 456-462.
Smith A, Chen D, Thomas R. Neuroinflammatory markers in metabolic syndrome and EEG frequency alterations. Metab Brain Dis. 2023; 38 (2): 234-241.
Janssens J, Malpetti M, Passamonti L. Assessing neuroinflammation in Alzheimer's disease: Focus on the role of biomarkers and PET imaging. Trends Mol Med. 2021; 27 (4): 337-348.
Mouzon BC, Bachmeier C, Ojo JO. The role of inflammation in neurodegenerative diseases and implications for therapy. Neurobiol Dis. 2022; 168: 105675.
Yuan Z, Wang Q, Xie F. Functional connectivity alterations in Alzheimer's disease and type 3 diabetes: A review of resting-state fMRI studies. NeuroImage Clin. 2021; 32: 102794.
Foster H, Lin J, Park C. Insights into brain connectivity in neurodegenerative disorders: Functional MRI applications. J Brain Imaging. 2022; 59 (4): 289-301.
Jung T, Carter R, Lee S. The role of insulin resistance in functional brain changes associated with early Alzheimer's disease. J Neuroendocrinol. 2021; 33 (12): e13191.
Dillon ST, Yuan Z, Yan L. Role of mitochondrial dysfunction in Alzheimer's disease and related neurodegenerative conditions. Front Neurosci. 2021; 15: 584211.
Vargas A, Gomez L, Ortiz M. Lactate dynamics in neurodegeneration: Implications for mitochondrial health in type 3 diabetes. Metab Brain Dis. 2021; 36 (3): 549-557.
Chen L, Ramirez A, Wallace M. Mitochondrial dysfunction and neurodegeneration: Insights from MRS studies. Front Neurosci. 2023; 17: 445321.
Smith A, Jones B. Adherence to lifestyle interventions for metabolic and neurodegenerative conditions: Challenges and solutions. Prev Health J. 2022; 14 (1): 55-69.
Anderson R, Martinez C, Johnson L. Lifestyle interventions and neuroprotection: Reducing the risk of neurodegenerative diseases. J Neurodegener Res. 2021; 12 (3): 256-266.
Hildreth KL, Hillman CH. Role of exercise in preventing cognitive decline in the elderly. Neurobiol Aging. 2015; 36 (Suppl 1): S20-S31.
Gómez-Pinilla F, Hillman CH. The influence of exercise on cognitive abilities and brain health. Trends Neurosci. 2013; 36 (2): 65-73.