medigraphic.com
SPANISH

Medicina Interna de México

Colegio de Medicina Interna de México.
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2025, Number 01

<< Back Next >>

Med Int Mex 2025; 41 (01)

Erythrocyte distribution width and platelet count in a cohort treated in the intensive care unit

Martínez SLM, Duque EL, Durango SC, Bejarano BJE, Arboleda RM, Uribe RM, Alvarez RS, Arango GS
Full text How to cite this article

Language: Spanish
References: 26
Page: 3-9
PDF size: 376.32 Kb.


Key words:

Intensive Care Unit, Biomarkers, Platelet count, Erythrocytes, Cause of death, Septic shock.

ABSTRACT

Objective: To characterize the erythrocyte distribution width and platelet count in a group of patients admitted to an intensive care unit.
Materials and Methods: Retrospective descriptive observational study. A nonprobabilistic sampling of consecutive cases was performed. Data were analyzed in the Jamovi program using univariate analysis; quantitative variables were analyzed using mean and standard deviation, median and interquartile range, and qualitative variables using absolute and relative frequencies.
Results: Forty-six patients with a median age of 66 years were included, with a male predominance (27 out of 46). The reason for ICU admission was documented in 21 of 46 patients with septic shock. The mean distribution width of erythrocytes was 14.4% before admission to the ICU and 15.4% before death. The median platelet count was 219,000 cells/mm3 before ICU admission and 160,000 cells/mm3 before death. The most common cause of death was cardiorespiratory arrest in 28 of 46 patients.
Conclusions: Biomarkers may be useful as predictors of mortality, according to the results of this study and the literature.


REFERENCES

  1. Casas J, Zambrano J, Vélez J, Vera R. Criterios de patologíasque requieren ingreso a la unidad de cuidados intensivo.Recimundo 2021; 5 (1): 172-8. https://doi.org/10.26820/recimundo/5.(esp.1).nov.2021.172-178

  2. Marshall JC, Bosco L, Adhikari NK, et al. What is an intensivecare unit? A report of the task force of the World Federationof Societies of Intensive and Critical Care Medicine.J Crit Care 2017; 37: 270-6. https://doi.org/10.1016/j.jcrc.2016.07.015

  3. Gutiérrez N. Análisis de mortalidad de pacientes en unidadde cuidados intensivos en un hospital del departamentodel Meta, Colombia. Revista Investigaciones Andina 2016;18 (33): 1605-24. https://doi.org/10.33132/01248146.644

  4. García M, Rivera R, Ruíz-Ruano R, Fernández E, et al.Análisis de mortalidad en una unidad de cuidados intensivosneurotraumatológica según el sistema APACHE III.Medicina Intensiva 2001; 25 (6): 223-26.

  5. Priego G. Ancho de distribución eritrocitaria como factorpronóstico en sepsis. Rev Med UAS 2019; 9 (2): 65-75. https://doi.org/10.28960/revmeduas.2007-8013.v9.n2.003

  6. Ichien D, Pacheco D, Reyes D. Eficacia de tres escalaspronósticas de mortalidad en la Unidad de Cuidados Intensivosdel HGR No. 20. Col Mex Med Crít 2022; 36 (2):101-6.https://doi.org/10.35366/104872

  7. Rocha-Arrieta M, De la Hoz-Bequis F, Guzmán-Corena A,Muñoz-Mejía C, et al. Ancho de distribución eritrocitariacomo marcador asociado a riesgo de mortalidad en niñosen cuidados intensivos. Medicina y Laboratorio 2021; 25(3): 633-47. https://doi.org/10.36384/01232576.454

  8. Henry B, Benoit J, Benoit S, Pulvino C, et al. Red blood celldistribution width (RDW) predicts COVID-19 severity: A prospective,observational study from the Cincinnati SARS-CoV-2emergency department cohort. Diagnostics (Basel) 2020; 10:618. https://doi.org/10.3390/diagnostics10090618

  9. Chen W, Xin S, Xu B. Value research of NLR, PLR, andRDW in prognostic assessment of patients with colorectalcancer. J Healthc Eng 2022; 2022: 7971415. https://doi.org/10.1155/2022/7971415

  10. Krishna V, Pillai G, Velickakathu-Sukumaran S. Red cell distributionwidth as a predictor of mortality in patients withsepsis. Cureus 2021; 13: e12912. https://doi.org/10.7759/cureus.12912

  11. De La Cruz-Vargas J, Vento F, Pérez M, Correa-López L.Red cell distribution width as mortality prognostic factorin patients 65 and older with hip fracture. Salud Uninorte2019; 35 (1): 13-28.

  12. Ozgul G, Seyhan E, Özgül M, Günlüoğlu M. Amplitud dedistribución eritrocitaria en pacientes con enfermedadpulmonar obstructiva crónica y en sujetos sanos. Archivosde Bronconeumología 2017; 53 (3): 107-13. https://doi.org/10.1016/j.arbres.2016.05.021

  13. De La Ossa-Mercado O, De La Hoz-Bequis F, Marsiglia-Armella H, Zárate-Vergara A, et al. Red cell distributionwidth in the prognosis of surgical correction of congenitalheart diseases. Arch Cardiol Mex 2023; 93 (2):156-63.https://doi.org/10.24875/ACM.210003401

  14. Lippi G, Plebani M. Red blood cell distribution width (RDW)and human pathology. One size fits all. Clin Chem Lab Med2014; 52: 1247-49.

  15. Riveros, D. El paciente trombocitopénico en la Unidad deCuidados Intensivos. XIII Congreso del Grupo CAHT 2018;22: 30-36.

  16. Zarychanski R, Houston D. Assessing thrombocytopeniain the intensive care unit: The past, present, and future.Hematology 2017; 1: 660-6

  17. Abad T, Cermelj M, Scoles G. Trombocitopenia como factorde riesgo de morbi-mortalidad en los pacientes hospitalizadosen una Unidad de Terapia Intensiva. Hematología2021; 25 (1): 1-10.

  18. Escobar N, Ranero J, Chocó-Cedillos A. Trombocitopeniaversus SOFA para predecir mortalidad en pacientes consepsis en la Unidad de Cuidados Intensivos de un hospitalde tercer nivel de Guatemala. Revista Científica 2019; 29(1): 1-12.

  19. Pusineri P, González-Gómez M, Barrios I, Torales J. Mortalidaden adultos con COVID-19: experiencia de la Unidadde Cuidados Intensivos de un Hospital de Tercer Nivelde Paraguay. Med clín soc 2023; 7 (1): 5-10. https://doi.org/10.52379/mcs.v7i1.22

  20. Anthon C, Pène F, Perner A, Azoulay E, et al. Thrombocytopeniaand platelet transfusions in ICU patients: aninternational inception cohort study (PLOT-ICU). IntensiveCare Med 2023; 49 (11): 1327-38. https://doi.org/10.1007/s00134-023-07225-2

  21. Deniz M, Ozgun P, Ozdemir E. Relationships between RDW,NLR, CAR, and APACHE II scores in the context of predictingthe prognosis and mortality in ICU patients. Eur RevMed Pharmacol Sci 2022; 26 (12): 4258-67. https://doi.org/10.26355/eurrev_202206_29063

  22. Aguilera Y, Díaz Y, Ortiz L, Gonzalez O, et al. Infeccionesbacterianas asociadas a la COVID-19 en pacientes de unaunidad de cuidados intensivos. Revista Cubana de MedicinaMilitar 2020; 49 (3): e0200793

  23. Hernández A, García A, Pradere J, Rives Y, et al. Bacteriemiasen la Unidad de Cuidados Intensivos. Revista Cubanade Medicina Militar 2019; 48 (1): 10-20.

  24. Ng WW, Lam SM, Yan WW, Shum HP. NLR, MLR, PLR andRDW to predict outcome and differentiate between viraland bacterial pneumonia in the intensive care unit. SciRep 2022; 12 (1): 15974. https://doi.org/10.1038/s41598-022-20385-3

  25. Lillemäe K, Luostarinen T, Reinikainen M, Bendel S,et al. Early thrombocytopenia is associated with anincreased risk of mortality in patients with traumaticbrain injury treated in the intensive care unit: a FinnishIntensive Care Consortium study. Acta Neurochir(Wien) 2022; (10): 2731-40. https://doi.org/10.1007/s00701-022-05277-9

  26. Krawiec P, Pac-Kożuchowska E. Biomarkers and HematologicalIndices in the Diagnosis of Iron Deficiency in Childrenwith Inflammatory Bowel Disease. Nutrients 2020; 12 (5):1358. https://doi.org/10.3390/nu12051358




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Med Int Mex. 2025;41