2022, Number 4
<< Back Next >>
Rev Cubana Pediatr 2022; 94 (4)
Contribution of tomographic findings to the diagnosis of intracranial hypertension in severe traumatic brain injury
Abreu PD, Lacerda GÁ
Language: Spanish
References: 31
Page: 1-20
PDF size: 587.17 Kb.
ABSTRACT
Introduction:
Traumatic brain injury is responsible for more than 500,000 visits to the emergency services, 95,000 hospitalizations and 7,000 deaths in children. Clinical monitoring is based on imaging techniques, among others.
Objective:
To relate the tomographic findings found, through Marshall's classification at the entrance and diameter of the optic nerve sheath and its association with intracranial pressure and with the results in the pediatric patient with severe head trauma.
Methods:
Prospective descriptive study with all pediatric patients suffering from severe head trauma between January 2003 and December 2017.
Results:
Of the 41 cases, a relationship was found between the levels of intracranial pressure and the degree of dislocation of the midline >10 mm in 10 patients (62.5%) and with the diameter of the optic nerve sheath (>5.5 mm) by skull tomography in 12 (75.0%); there was also a relationship between these two variables with the results at 6 months of evolution.
Conclusions:
The use of simple tomography of the skull as a tool for the determination of variables used in the non-invasive monitoring of intracranial pressure such as Marshall tomographic classification, midline dislocation and measurement of the diameter of the optic nerve sheath, allows to identify increases in intracranial pressure. This could be used for the intensive treatment of pediatric patients with severe head trauma, without the need for invasive monitoring in them.
REFERENCES
Young AMK, Kolias AG, Hutchinson PJ. Descompressive craniectomy for traumatic intracranial hypertension: application in children. Childs Nerv Syst 2017;33:1745-1750. DOI: https://doi.org/10.1007/s00381-017-3534-71. .
Kaur P, Sharma S. Recent Advances in Pathophysiology of Traumatic Brain Injury. Current Neuropharmacol 2018;16(8):1224-1238. DOI: https://doi.org/10.2174/1570159X156661706130836062.
Morales CW, Plata OJ, Plata OS, Macías CA, Cárdenas GY, Nocua AL, et al. Trauma craneoencefálico en Pediatría: la importancia del abordaje y categorización del paciente pediátrico en el servicio de urgencias. Pediatr 2019;52(3):85-93. DOI: https://doi.org/10.14295/p.v52i3.1213.
Mathers CD, Loncar D. Projections of Global Mortality and Burden of Disease from 2002 to 2030. PLoS Med. 2006;3:e442.
Young AMH, Guilfoyle MR, Donnelly J, Smielewski P, Agarwal S, Czosnyka M, et al. Multimodality Neuromonitoring in severe pediatric traumatic brain injury. Pediatric Res. 2018;83(1):41-9. DOI: https://doi.org/10.1038/pr2017.2155.
Dong-Seong S, Sun-Chul H, Bum-Tae K, Je Hoon J, Soo-Bin I, Won-Han S. Serial Brain CT Scans in Severe Head Injury without Intracranial Pressure Monitoring. Korean J Neurotrauma. 2014;10(1):26-30. DOI: https://doi.org/10.13004/kjnt.2014.10.1.266.
Islas ARE, Coria LVL, Montelongo F, Reyes PMM, Domínguez AC, Suárez SA. Medición del diámetro de la vaina del nervio óptico por ultrasonografía versus tomografía simple de cráneo en pacientes con trauma craneoencefálico. Med Crit. 2020;34(4):221-30. DOI: https://dx.doi.org/1035.366/958777. .
Young AM, Guilfoyle MR, Donnelly J, Scoffings D, Fernandes H, Garnett M et al. Correlating optic nerve sheath diameter with opening intracranial pressure in pediatric traumatic brain injury. Pediatr Res 2017;81(3):443-447. DOI: https://doi.org/10.1038/pr.2016.1658.
Teasdale G, Jennett B. Assessment of coma impaired consciousness. A practical scale. Lancet 1974;2(7872):81-4. DOI: https://doi.org/10.1016/s0140-6736(74)91639-09.
Marshall LF, Becker DP, Bowers SA, Cayard C, Eisenberg H, Gross CR, et al. The national traumatic coma data bank. Part1: design, purpose, goals and results. J Neurosurg.1983;59:276-84.16. DOI: https://doi.org/10.3171/jns.1983.59.2.027610.
Brown AW, Pretz CR, Bell KR, Hammond FM, Arciniegas DB, Bodien YG, et al. Predictive Utility of an Adapted Marshall Head-CT Classification Scheme After Traumatic Brain Injury. Brain Inj 2019;33(5): 610-17. DOI: https://doi.org/10.1080/02699052.2019.156697011. .
Munakomi S. A comparative study between Marshall and Rotterdam CT scores in predicting early deaths in patients with traumatic brain injury in a major tertiary care hospital in Nepal. Chinese J Traumatol 2019;(2016):25e27. DOI: https://doi.org/10.1016/j.cjtee.2015.12.00512. .
Siahaan AMP, Akbar TYM, Nasution MD. The role of marshall and rotterdam score in predicting 30-day outcome of traumatic brain injury. Earth Environ. Sci. 2018 [acceso 10/02/2022];125(1):012208. Disponible en: https://www.iopscience.iop.org/article/10.1088/1755-1315/125/1/01220813.
Frodsham KM, Fair JE, Frost RB, Hopkins RO, Bigler ED, Majercik S, et al. Day-of-Injury Computed Tomography and Longitudinal Rehabilitation Outcomes: A Comparison of the Marshall and Rotterdam Computed Tomography Scoring Methods. Am J Phys Med Rehabil. 2020;99(9):821-29. DOI: https://doi.org/10.1097/PHM.000000000000142214.
Mahadewa TG, Golden N, Saputra A, Ryalino C. Modified Revised Trauma-Marshall score as a proposed tool in predicting the outcome of moderate and severe traumatic brain injury. Open Access Emerg Med. 2018:10 135-9. DOI: https://doi.org/10.2147/OAEM.17909015. .
Thelin EP, Nelson DW, Vehvila ¨inen J, Nystro ¨m H, Kivisaari R, Siironen J et al. Evaluationof novel computerized tomography scoring systems in human traumatic brain injury: An observational, multicenterstudy. PLoS Med 2017;14(8):e1002368. DOI: https://doi.org/10.1371/journal.pmed.100236816. .
You W, Feng J, Tang Q, Cao J, Wang L, Lei J, Intraventricular intracranial pressure monitoring improves the outcome of older adults with severe traumatic brain injury: an observational, prospective study. BMC Anesthesiol. 2016;16:35. DOI: https://doi.org/10.1186/s12871-016-0199-917. .
Kayhanian S, Young AMH, Ewen RL, Piper RJ, Guilfoyle MR, Donnelly J et al. Thresholds for identifying pathological intracranial pressure in paediatric traumatic brain injury. Scientific Repo. 2019;9:3537. DOI: https://doi.org/10.1038/s41598-019-39848-118.
Kayhanian S, Young AMH, Piper RJ, Donnelly J, Scoffings D, Garnet MR, et al. Radiological Correlates of Raised intracranial Pressure in Children: A Review. Front Pediatr. 2018;6:32. DOI: https://doi.org/10.3389/fped.2018.0003219. .
Young AMH, Donnelly J, Liu X, Guilfoyle MR, Carew M, Cabeleira M, et al. Computed Tomography Indicators of Deranged Intracranial Physiology in Paediatric Traumatic Brain Injury. In: Heldt T, editor. Intracranial Pressure Neuromonitoring XVI. Acta Neurochirurgica (Suppl 126). Massachusetts: Institute for Medical Engineering and Science; 2018. p. 29-34. DOI: https://doi.org/10.1007/978-3-319-65798-1_720.
Courchesne E, Chisum HJ, Townsend J, Cowles A, Covington J, Egaas B, et al. Normal Brain Development and Aging: Quantitative Analysis at in Vivo MR Imaging in Healthy Volunteers. Radiology. 2000;216:672-82. DOI: https://doi.org/10.1148/radiology.216.3.r00au3767221. .
Bullock RM, Chesnut RM, Clifton G. Management and prognosis in severe traumatic brain injury. Part 1: Guidelines for the management of severe traumatic brain injury. Part 2: Early indicators of prognosis in severe traumatic brain injury. J Neurotrauma. 2000;17:451-627.
Zepeda MD, Carrillo ER. Medición ultrasonográfica del diámetro de la vaina del nervio óptico como marcador de hipertensión intracraneana. Rev Mex Anestesiol. 2017 [acceso 12/02/2022];40(supl1):255-257. Disponible en: https://www.medigraphic.com/rma23.
Kochanek PM, Tasker RC, Carney N, Totten AM, Adelson PD, Selden NR, et al. Guidelines for the Management of Pediatric Severe Traumatic Brain Injury, Third Edition: Update of the Brain Trauma Foundation Guidelines. Pediatric Critical Care Med. 2019;20(3). DOI: https://doi.org/10.1093/neuros/nyz05124. .
Gutiérrez BP. Medición del grosor de la vaina del nervio óptico por ecografía transorbital y su asociación con hallazgos tomográficos indicativos de elevación de la presión intracraneal, en los pacientes atendidos en el Centro de Alta Tecnología (CAT) del Hospital Escuela Antonio Lenin Fonseca durante el mes de octubre a diciembre de 2017 [tesis]. Nicaragua: Universidad Nacional Autónoma de Nicaragua (UNAN- Managua); 2018 [acceso 02/03/2022]. Disponible en: https://repositorio.unan.edu.ni/id/eprint/912425.
Yagar AB, Kozaci N, Avci M, Yildiz S, Karaman Y. Determination of optic nerves heath diameter variability with age in pediatric groups and comparison of increased intracranial pressure and optic nerve sheath diameter in pediatric patients with head trauma. Ann Med Res. 2018;25(3):460-5. DOI: https://doi.org/10.5455/annalsmedres.2018.05.09926.
Agrawal S, Brierley J. Optic nerve sheath measurement and raised intracranial pressure in paediatric traumatic brain injury. Eur J Trauma Emerg Surg. 2012;38(1):75-7. DOI: https://doi.org/10.1007/s00068-011-0093-627.
Raffiz M., Abdullah JM. Optic nerve Sheath diameter measurement: a menas of detecting raised ICP in adult traumatic neurosurgical patients. Am J Emerg Med. 2017;35(1):150-3. DOI: https://doi.org/10.1016/j.ajem.2016.09.04428. .
Lee SH, Kim HS, Yun SJ.Optic nerves heath diameter measurement for predicting raised intracranial pressure in adult patients with severe traumatic brain injury: A meta-analysis. J Crit Care. 2020;56:182-7. DOI: https://doi.org/10.1016/j.jcrc.2020.01.00629.
Liu M, Yang ZK, Yan YF, Shen X, Yao HB, Fei L. Optic Nerve Sheath Measurements by Computed Tomography to Predict Intracranial Pressure and Guide Surgery in Patients with Traumatic Brain Injury.World Neurosurg. 2020;134:e317-e324. DOI: https://doi.org/10.1016/j.wneu.2019.10.06530.
Majeed G, Kashyap S, Menoni R, Miulli D, Sweiss R. A noninvasive method for the estimation of increased intracranial pressure in patients with severe traumatic brain injury using optic nerve sheath diameter measured on computed tomography head. Surg Neurol Int. 2019;10:97. DOI: https://doi.org/10.25259/SNI-120-201931.