2024, Number 8
<< Back
Med Crit 2024; 38 (8)
Cardiopulmonary implications of invasive mechanical ventilation in congenital cardiopathy. Case report and review of the literature
Cruz MB, Piñeiro PY, Martínez GEX
Language: Spanish
References: 22
Page: 698-703
PDF size: 310.96 Kb.
ABSTRACT
Introduction: positive pressure ventilation is used in multiple cardiac pathologies as a life support measure to achieve adequate gas exchange and improve tissue perfusion. The operator must be aware of the pathophysiological interactions of the critically ill patient in order to be able to discern when the use of mechanical ventilation is appropriate, or its use could be deleterious. A programming of parameters not in accordance with the patient's needs could cause pulmonary damage and hemodynamic deterioration. Not understanding cardiopulmonary interactions in mechanical ventilation will change the prognosis of any patient for the worse. In congenital heart disease with communication between pulmonary and systemic circulation, this management can increase pulmonary vascular resistance, with the appearance or worsening of an intracardiac shunt that can have important consequence.
Case report: patient with congenital heart disease who after ventilatory management worsened hemodynamically to a state of refractory shock with persistent desaturation, improving with lower airway pressures and early extubation. Reports of cases with the same evolution are mentioned.
Conclusion: understanding cardiopulmonary interactions improves the prognosis of patients on mechanical ventilation.
REFERENCES
Alviar CL, Rico-Mesa JS, Morrow DA, Thiele H, Miller PE, Maselli DJ, et al. Positive pressure ventilation in cardiogenic shock: review of the evidence and practical advice for patients with mechanical circulatory support. Can J Cardiol. 2020;36(2):300-312. Available from: https://doi.org/10.1016/j.cjca.2019.11.038
Weale J, Kelleher AA. Adult congenital heart disease. Anaesth Intensive Care Med. 2021;22(5):290-296.
Márquez-González H, Yáñez-Gutiérrez L, Rivera-May JL, López-Gallegos D, Almeida-Gutiérrez E. Demographic analysis of a congenital heart disease clinic of the Mexican Institute of Social Security, with special interest in the adult. Arch Cardiol Mex. 2018;88(5):360-368.
Gerke B, Cortes-Puentes G. Mechanical ventilation in congenital heart disease: a case of complex cardiopulmonary interactions | B47. Critical care case reports: Cardiovascular diseases and echocardiography. Am J Respir Crit Care Med. 2018;197:A3442. Available from: https://www.atsjournals.org/doi/pdf/10.1164/ajrccm-conference.2018.197.1_MeetingAbstracts.A3442?download=true
Ferrer M, Esquinas A, Leon M, Gonzalez G, Alarcon A, Torres A. Noninvasive ventilation in severe hypoxemic respiratory failure: a randomized clinical trial. Am J Respir Crit Care Med. 2003;168(12):1438-1444.
Rajendram R, Hussain A, Mahmood N, Via G. Dynamic right-to-left interatrial shunt may complicate severe COVID-19. BMJ Case Reports CP. 2021;14(10):e245301. Available from: https://casereports.bmj.com/content/14/10/e245301
Eerdekens R, Bouwmeester S. Atrial septal defect and haemodynamic consequences of continuous positive airway pressure treatment. Lancet. 2020;395(10240):1864.
Abbas AE, Fortuin FD, Schiller NB, Appleton CP, Moreno CA, Lester SJ. A simple method for noninvasive estimation of pulmonary vascular resistance. J Am Coll Cardiol. 2003;41(6):1021-1027.
Martínez-Vázquez JL, Martos-Sánchez I, Alvarez-Rojas E, Pérez-Caballero C. Ventilación mecánica en cardiopatías congénitas e hipertensión pulmonar. An Pediatr (Barc). 2003;59(4):372-376.
Cheifetz IM. Cardiorespiratory interactions: the relationship between mechanical ventilation and hemodynamics. Respir Care. 2014;59(12):1937-1945.
Iliopoulos I, Nelson DP. Cardiopulmonary interactions in adults and children with congenital heart disease. Prog Pediatr Cardiol. 2015;39(2):151-156.
Allan CK. Intensive care of the adult patient with congenital heart disease. Prog Cardiovasc Dis. 2011;53(4):274-280. Available from: http://dx.doi.org/10.1016/j.pcad.2010.11.002
Scharf SM, Ingram RH. Influence of abdominal pressure and sympathetic vasoconstriction on the cardiovascular response to positive end-expiratory pressure. Am Rev Respir Dis. 2015;116(4):661-670. https://doi.org/101164/arrd19771164661.
Benumof JL, Rogers SN, Moyce PR, Berryhill RE, Wahrenbrock EA, Saidman LJ. Hypoxic pulmonary vasoconstriction and regional and whole-lung PEEP in the dog. Anesthesiology. 1979;51(6):503-507. Available from: https://dx.doi.org/10.1097/00000542-197912000-00004
Cheifetz IM, Craig DM, Quick G, McGovern JJ, Cannon ML, Ungerleider RM, et al. Increasing tidal volumes and pulmonary overdistention adversely affect pulmonary vascular mechanics and cardiac output in a pediatric swine model. Crit Care Med. 1998;26(4):710-716.
Hamahata N, Pinsky MR. Heart-lung interactions. Semin Respir Crit Care Med. 2023;44(5):650-660.
Caille V, Amiel JB, Charron C, Belliard G, Vieillard-Baron A, Vignon P. Echocardiography: a help in the weaning process. Crit Care. 2010;14(3):R120.
Pinsky MR, Summer WR. Cardiac augmentation by phasic high intrathoracic pressure support in man. Chest. 1983;84(4):370-375. Available from: http://journal.chestnet.org/article/S0012369215369701/fulltext
Pinsky MR, Summer WR, Wise RA, Permutt S, Bromberger-Barnea B. Augmentation of cardiac function by elevation of intrathoracic pressure. J Appl Physiol. 1983;54(4):950-955.
Scharf SM, Chen L, Slamowitz D, Rao PS. Effects of continuous positive airway pressure on cardiac output and plasma norepinephrine in sedated pigs. J Crit Care. 1996;11(2):57-64.
Ferrer AR, Fernández AR, Sagrera MR, Sala MF. Foramen oval permeable y ventilación mecánica. Rev Esp Cardiol. 2010;63(7):877-878.
Bernard S, Churchill TW, Namasivayam M, Bertrand PB. Agitated saline contrast echocardiography in the identification of intra- and extracardiac shunts?: Connecting the dots. J Am Soc Echocardiogr. 2020:S0894-7317(20)30615-5. Available from: https://doi.org/10.1016/j.echo.2020.09.013