medigraphic.com
SPANISH

Revista Cubana de Salud Pública

ISSN 1561-3127 (Electronic)
ISSN 0864-3466 (Print)
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2022, Number 3

<< Back Next >>

Revista Cubana de Salud Pública 2022; 48 (3)

Impact of relative humidity on COVID-19 transmission

Navarro-Duran A, Cortez-Huerta M
Full text How to cite this article

Language: Spanish
References: 35
Page: 1-17
PDF size: 1174.98 Kb.


Key words:

COVID-19, relative humidity, generalized logistics model, viruses, tropical zone.

ABSTRACT

Introduction: The new pathogen SARS-CoV-2 presents a rapid spread, and is the cause of the Coronavirus disease 2019 (COVID-19). Given that this virus is recent, the increase in cases of the COVID-19 disease has been a great threat, to which has been added the lack of conclusive information about the disease, its transmission, and its relationship with the different environmental variables.
Objective: To determine the incidence of relative humidity in the transmission of COVID- 19 in the tropical regions of Colombia.
Methods: Relative humidity data and number of daily COVID-19 infections from seven cities in Colombia located in the Caribbean Region (Barranquilla and Sincelejo), Andean region (Medellín, Bucaramanga, Armenia and Cúcuta), as well as the Amazon Region (Leticia) were analyzed. A generalized logistic model was used to analyze existing data and design epidemiological curves.
Results: For all cities, according to the model, high correlations were found between relative humidity (observed variable) and COVID-19 (predicted variable) with an R2 > 0.90. However, it was determined if there was an association between the variables by comparing the p-value with the level of significance α 0.05, a statistically significant association was found in the cities of Leticia, Barranquilla and Cúcuta.
Conclusion: The results indicate that there is a direct relationship between relative humidity and the transmission of COVID 19 in tropical regions of Colombia. Hence, it is proposed that the study provides an important tool for the decision-making of the institutions in charge of the control of the disease, such as national and local governments.


REFERENCES

  1. WHO. Nuevo coronavirus 2019 (COVID-19). Geneva: World Health Organization; 2020[acceso 12/08/2020]. p. 5-8. Disponible en:https://www.who.int/es/emergencies/diseases/novel-coronavirus-2019

  2. Auler AC, Cássaro FA, da Silva VO, Pires LF. Evidence that high temperatures andintermediate relative humidity might favor the spread of COVID-19 in tropical climate: Acase study for the most affected Brazilian cities. Sci Total Environ. 2020;729-1:10. DOI:10.1016/j.scitotenv.2020.139090

  3. Nishiura H, Linton NM, Akhmetzhanov AR. Serial interval of novel coronavirus(COVID-19) infections. Int J Infect Dis. 2020;93:284-306. DOI: 10.1016/j.ijid.2020.02.060

  4. Rasmussen SA, Smulian JC, Lednicky JA, Wen TS, Jamieson DJ. Coronavirus Disease2019 (COVID-19) and pregnancy: what obstetricians need to know. Am J Obstet Gynecol.2020;222(5):415-26. DOI: 10.1016/j.ajog.2020.02.017

  5. Steel J, Palese P, Lowen AC. Transmission of a 2009 Pandemic Influenza Virus Shows aSensitivity to Temperature and Humidity Similar to That of an H3N2 Seasonal Strain. JVirol. 2011;85(3):14-20. DOI: 10.1128/JVI.02186-10

  6. Bourouiba L. Turbulent Gas Clouds and Respiratory Pathogen Emissions: PotentialImplications for Reducing Transmission of COVID-19. JAMA - J Am Med Assoc.2020;323(18):1837-48. DOI: 10.1001/jama.2020.4756

  7. Vellingiri B, Jayaramayya K, Iyer M, Narayanasamy A, Govindasamy V, Giridharan B,et al. COVID-19: A promising cure for the global panic. Sci Total Environ. 2020;725:138-47. DOI: 10.1016/j.scitotenv.2020.138277

  8. Dalziel BD, Kissler S, Gog JR, Viboud C, Bjørnstad ON, Metcalf CJ, et al. Urbanizationand humidity shape the intensity of influenza epidemics in U.S. cities. Science.2018;362(6410):75-9. DOI: 10.1126/science.aat6030

  9. Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndromecoronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents. 2020;55(3):105-24. DOI:

  10. 10.1016/j.ijantimicag.2020.10592410. Remuzzi A, Remuzzi G. COVID-19 and Italy: what next? Lancet.2020;395(10231):1225-8. DOI: 10.1016/S0140-6736(20)30627-9

  11. Chan KH, Peiris JS, Lam SY, Poon LL, Yuen KY, Seto WH. The effects of temperatureand relative humidity on the viability of the SARS coronavirus. Adv Virol. 2011;2011:1-7.DOI: 10.1155/2011/734690

  12. Singhal T. Review on COVID19 disease so far. Indian J Pediatr. 2020;87(April):281-6.DOI: 10.1007/s12098-020-03263-6

  13. Booth TF, Kournikakis B, Bastien N, Ho J, Kobasa D, Stadnyk L, et al. Detection ofairborne severe acute respiratory syndrome (SARS) coronavirus and environmentalcontamination in SARS outbreak units. J Infect Dis. 2005;191(9):1472-77. DOI:10.1086/429634

  14. Runkle JD, Sugg MM, Leeper RD, Rao Y, Matthews JL, Rennie JJ. Short-term effectsof specific humidity and temperature on COVID-19 morbidity in select US cities. Sci TotalEnviron. 2020;740:1-9. DOI: 10.1016/j.scitotenv.2020.140093

  15. ALA. American Lung Association: State of the Air. American Lung Association. 2013[acceso 12/07/2020]. Disponible en: https://www.stateoftheair.org/

  16. Harper GJ. Airborne micro-organisms: Survival tests with four viruses. J Hyg (Lond).1961;59(4):479-86. DOI: 10.1017/S0022172400039176

  17. Casanova LM, Jeon S, Rutala WA, Weber DJ, Sobsey MD. Effects of air temperatureand relative humidity on coronavirus survival on surfaces. Appl Environ Microbiol.2010;76(9):2712-17. DOI: 10.1128/AEM.02291-09

  18. Prata DN, Rodrigues W, Bermejo PH. Temperature significantly changes COVID-19transmission in (sub)tropical cities of Brazil. Sci Total Environ. 2020;729:138-62. DOI:10.1016/j.scitotenv.2020.138862

  19. CDC. Datos anteriores de casos de COVID-19 en los EE. UU. Georgia: Centros para elControl y Prevención de Enfermedades. 2020 [acceso 12/08/2020]. Disponible en:https://espanol.cdc.gov/coronavirus/2019-ncov/cases-updates/previouscases.html

  20. Ficetola GF, Rubolini D. Climate affects global patterns of COVID-19 early outbreakdynamics. medRxiv and bioRxiv. 2020;501:1-18. DOI: 10.1101/2020.03.23.20040501

  21. Ma Y, Zhao Y, Liu J, He X, Wang B, Fu S, et al. Effects of temperature variation andhumidity on the death of COVID-19 in Wuhan, China. Sci Total Environ. 2020;724:126-38.DOI: 10.1016/j.scitotenv.2020.138226

  22. Liu J, Zhou J, Yao J, Zhang X, Li L, Xu X, et al. Impact of meteorological factors on theCOVID-19 transmission: A multi-city study in China. Sci Total Environ. 2020;726:138-43.DOI: 10.1016/j.scitotenv.2020.138513

  23. Tosepu R, Gunawan J, Effendy DS, Ahmad LOAI, Lestari H, Bahar H, et al. Correlationbetween weather and Covid-19 pandemic in Jakarta, Indonesia. Sci Total Environ.2020;725:1-4. DOI: 10.1016/j.scitotenv.2020.138436

  24. Pabón J, Zea J, León G, Hurtado G, González O, Montealegre J, et al. La atmósfera, eltiempo y el clima. En: El Medio Ambiente En Colombia. Bogotá: IDEAM; 2001 [acceso04/05/2019].http://documentacion.ideam.gov.co/openbiblio/bvirtual/005192/medioambiente/cap3parteI.pdf

  25. INS. Coronavirus Colombia. Bogotá: Instituto Nacional de Salud. 2020 [acceso12/06/2020]. Disponible en: https://www.ins.gov.co/Noticias/Paginas/Coronavirus.aspx

  26. Chowell G, Hincapie-Palacio D, Ospina J, Pell B, Tariq A, Dahal S, et al. UsingPhenomenological Models to Characterize Transmissibility and Forecast Patterns and FinalBurden of Zika Epidemics. PLoS Curr. 2016;8:395-410. DOI:10.1371/currents.outbreaks.f14b2217c902f453d9320a43a35b9583

  27. Zhou G, Yan G. Severe acute respiratory syndrome epidemic in Asia. Emerg Infect Dis.2003 Dec;9(12):1608-10. DOI: 10.3201/eid0912.030382

  28. Chowell G, Viboud C, Simonsen L, Merler S, Vespignani A. Perspectives on modelforecasts of the 2014-2015 Ebola epidemic in West Africa: lessons and the way forward.BMC Med. 2017 Dec 1;15(1):42-50. DOI: 10.1186/s12916-017-0811-y

  29. Aviv-Sharon E, Aharoni A. Generalized logistic growth modeling of the COVID-19pandemic in Asia. Infect Dis Model. 2020;5:502-9. DOI: 10.1016/j.idm.2020.07.003

  30. Liu JJ, Zhou J, Yao J, Zhang X, Li L, Xu X, et al. The sensitivity and specificity analysesof ambient temperature and population size on the transmission rate of the novel coronavirus(COVID-19) in different provinces of Iran. Sci Total Environ. 2020;728(1):138-52. DOI:10.1016/j.scitotenv.2020.138872

  31. Qi H, Xiao S, Shi R, Ward MP, Chen Y, Tu W, et al. COVID-19 transmission inMainland China is associated with temperature and humidity: A time-series analysis. SciTotal Environ. 2020;728:138-48. DOI: 10.1016/j.scitotenv.2020.138778

  32. Esteban M, Gordaliza A, Inzitari M, Jordano P, Lecuona I De, Lechuga LM, et al.Informe del GTM 1 sobre “Atmósfera” y Covid -19. España: Gobierno de España; 2020[acceso 12/08/2020]. Disponible en:https://www.ciencia.gob.es/stfls/MICINN/Ministerio/FICHEROS/InformeGTMsobre_atmosfera.pdf

  33. Yuan J, Yun H, Lan W, Wang W, Sullivan SG, Jia S, et al. A climatologic investigationof the SARS-CoV outbreak in Beijing, China. Am J Infect Control. 2006;34(4):234-46. DOI:10.1016/j.ajic.2005.12.006

  34. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics inWuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med.2020;382(13):1199-207. DOI: 10.1056/NEJMoa2001316

  35. Sobral MF, Duarte GB, da Penha Sobral AI, Marinho ML, de Souza Melo A. Associationbetween climate variables and global transmission oF SARS-CoV-2. Sci Total Environ.2020;729:138-47. DOI: 10.1016/j.scitotenv.2020.138997




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Revista Cubana de Salud Pública. 2022;48