medigraphic.com
SPANISH

Revista de Nefrología, Diálisis y Trasplante

ISSN 0326-3428 (Print)
Órgano de difusión científica de la Asociación Nefrológica de Buenos Aires
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2025, Number 1

<< Back

Rev Nefrol Dial Traspl 2025; 45 (1)

Glomerular hyperfiltration: a pathophysiological view to understand its consequences and treatment

Ardiles L, Lorca E
Full text How to cite this article

Language: Spanish
References: 73
Page: 49-58
PDF size: 306.48 Kb.


Key words:

Chronic Kidney Disease, Glomerular Filtration Rate, Physiopathology, Obesity, Metabolic Syndrome, Diabetic Nephropathies.

ABSTRACT

Glomerular hyperfiltration represents a defining feature of renal dysfunction in the context of obesity and diabetes mellitus. The term ‘hyperfiltration nephropathy’ has been used to describe obesity-related glomerulopathy and other adaptive nephropathies, emphasizing the central role of hyperfiltration in the pathogenesis of these conditions. Recent clinical trials have demonstrated that sodiumglucose cotransporter-2 inhibitors or glucagon-like peptide-1 agonists are effective in reducing glomerular hyperfiltration and provide additional renal protection when used in conjunction with renin-angiotensin blockade in diabetic nephropathy. This review assesses the current evidence for a cause-and-effect relationship between physical forces related to hyperfiltration and the development of chronic kidney disease beyond diabetes. It also considers potential therapeutic interventions that could be offered to patients.


REFERENCES

  1. Cortinovis M, Perico N, Ruggenenti P, RemuzziA, Remuzzi G. Glomerular hyperfiltration. NatureReviews Nephrology. 2022;18(7):435-51.

  2. Praga M. Synergy of low nephron number andobesity: a new focus on hyperfiltration nephropathy.Nephrol Dial Transplant. 2005;20(12):2594-7.

  3. Brenner BM, Lawler EV, Mackenzie HS. Thehyperfiltration theory: a paradigm shift innephrology. Kidney Int. 1996;49(6):1774-7.

  4. Deen WM, Maddox DA, Robertson CR, BrennerBM. Dynamics of glomerular ultrafiltration in therat. VII. Response to reduced renal mass. Am JPhysiol. 1974;227(3):556-62.

  5. Chen HM, Liu ZH, Zeng CH, Li SJ, Wang QW,Li LS. Podocyte lesions in patients with obesityrelatedglomerulopathy. Am J Kidney Dis.2006;48(5):772-9.

  6. González E, Gutiérrez E, Morales E, HernándezE, Andrés A, Bello I, et al. Factors influencingthe progression of renal damage in patients withunilateral renal agenesis and remnant kidney.Kidney Int. 2005;68(1):263-70.

  7. Cachat F, Combescure C, Cauderay M, GirardinE, Chehade H. A systematic review of glomerularhyperfiltration assessment and definition inthe medical literature. Clin J Am Soc Nephrol.2015;10(3):382-9.

  8. Stevens LA, Schmid CH, Greene T, Zhang YL, BeckGJ, Froissart M, et al. Comparative performance ofthe CKD Epidemiology Collaboration (CKD-EPI)and the Modification of Diet in Renal Disease(MDRD) Study equations for estimating GFRlevels above 60 mL/min/1.73 m2. Am J Kidney Dis.2010;56(3):486-95.

  9. Lee AM, Charlton JR, Carmody JB, Gurka MJ,DeBoer MD. Metabolic risk factors in nondiabeticadolescents with glomerular hyperfiltration. NephrolDial Transplant. 2017;32(9):1517-24.

  10. Forman JP, Brenner BM. ‘Hypertension’ and‘microalbuminuria’: the bell tolls for thee. KidneyInt. 2006;69(1):22-8.

  11. Ruggenenti P, Remuzzi G. Time to abandonmicroalbuminuria? Kidney Int. 2006;70(7):1214-22.

  12. Eriksen BO, Løchen ML, Arntzen KA, BertelsenG, Eilertsen BA, von Hanno T, et al. Subclinicalcardiovascular disease is associated with a highglomerular filtration rate in the nondiabetic generalpopulation. Kidney Int. 2014;86(1):146-53.

  13. Staplin N, Herrington WG, Murgia F, IbrahimM, Bull KR, Judge PK, et al. Determining theRelationship Between Blood Pressure, KidneyFunction, and Chronic Kidney Disease: Insightsfrom Genetic Epidemiology. Hypertension.2022;79(12):2671-81.

  14. Pinto-Sietsma SJ, Mulder J, Janssen WM,Hillege HL, de Zeeuw D, de Jong PE. Smokingis related to albuminuria and abnormal renalfunction in nondiabetic persons. Ann Intern Med.2000;133(8):585-91.

  15. Brenner BM. Hemodynamically mediatedglomerular injury and the progressive nature ofkidney disease. Kidney Int. 1983;23(4):647-55.

  16. Stefansson VT, Schei J, Jenssen TG, MelsomT, Eriksen BO. Central obesity associates withrenal hyperfiltration in the non-diabetic generalpopulation: a cross-sectional study. BMC Nephrol.2016;17(1):172.

  17. Naaman SC, Bakris GL. Diabetic Nephropathy:Update on Pillars of Therapy Slowing Progression.Diabetes Care. 2023;46(9):1574-86.

  18. Watanabe K, Sato E, Mishima E, Miyazaki M,Tanaka T. What’s New in the Molecular Mechanismsof Diabetic Kidney Disease: Recent Advances. Int JMol Sci. 2022;24(1).

  19. Goodfriend TL, Elliott ME, Catt KJ. Angiotensinreceptors and their antagonists. N Engl J Med.1996;334(25):1649-54.

  20. Ruiz-Ortega M, Lorenzo O, Suzuki Y, Rupérez M,Egido J. Proinflammatory actions of angiotensins.Curr Opin Nephrol Hypertens. 2001;10(3):321-9.

  21. Premaratne E, Verma S, Ekinci EI, TheverkalamG, Jerums G, MacIsaac RJ. The impact ofhyperfiltration on the diabetic kidney. DiabetesMetab. 2015;41(1):5-17.

  22. Bakris GL, Fairbanks R, Traish AM. Argininevasopressin stimulates human mesangialcell production of endothelin. J Clin Invest.1991;87(4):1158-64.

  23. Hostetter TH. Hyperf iltration andglomerulosclerosis. Semin Nephrol. 2003;23(2):194-9.

  24. Barutta F, Bellini S, Gruden G. Mechanismsof podocyte injury and implications for diabeticnephropathy. Clin Sci (Lond). 2022;136(7):493-520.

  25. Poursharif S, Hamza S, Braam B. Changesin Proximal Tubular Reabsorption ModulateMicrovascular Regulation via the TGF System. Int JMol Sci. 2022;23(19):11203

  26. Tuttle KR. Back to the Future: GlomerularHyperfiltration and the Diabetic Kidney. Diabetes.2017;66(1):14-6.

  27. Grabias BM, Konstantopoulos K. The physical basisof renal fibrosis: effects of altered hydrodynamicforces on kidney homeostasis. Am J Physiol RenalPhysiol. 2014;306(5):F473-85.

  28. Chagnac A, Weinstein T, Korzets A, RamadanE, Hirsch J, Gafter U. Glomerular hemodynamicsin severe obesity. Am J Physiol Renal Physiol.2000;278(5):F817-22.

  29. Rebelos E, Dadson P, Oikonen V, Iida H, HannukainenJC, Iozzo P, et al. Renal hemodynamics and fattyacid uptake: effects of obesity and weight loss. Am JPhysiol Endocrinol Metab. 2019;317(5):E871-E8.

  30. Sandino J, Luzardo L, Morales E, Praga M. WhichPatients with Obesity Are at Risk for Renal Disease?Nephron. 2021;145(6):595-603.

  31. Reisin E, Jack AV. Obesity and hypertension:mechanisms, cardio-renal consequences, andtherapeutic approaches. Med Clin North Am.2009;93(3):733-51.

  32. Raikou VD, Gavriil S. Body-mass index and therisk of albuminuria in hypertensive patients witha poor estimated glomerular filtration rate and thepotential role of diabetes mellitus. Diabetes MetabSyndr. 2019;13(2):1041-6.

  33. Vega J, Huidobro J, Sepúlveda R. La indexación ala superficie corporal disminuye la estimación dela velocidad de filtración glomerular y aumenta laseveridad en la calsificación de la enfermedad renalcrónica en la población con sobrepeso y obesidad.Revista Médica de Chile. 2024;152(7):798-807.

  34. Fernández P, Nores ML, Douthat W, de ArteagaJ, Luján P, Campazzo M, et al. Estimation ofGlomerular Filtration Rate in Obese Patients: Utilityof a New Equation. Nutrients. 2023;15(5):1233.

  35. Ogna A, Forni Ogna V, Bochud M, Guessous I,Paccaud F, Burnier M, et al. Association betweenobesity and glomerular hyperfiltration: theconfounding effect of smoking and sodium andprotein intakes. Eur J Nutr. 2016;55(3):1089-97.

  36. Okada R, Yasuda Y, Tsushita K, Wakai K,Hamajima N, Matsuo S. The number of metabolicsyndrome components is a good risk indicator forboth early- and late-stage kidney damage. NutrMetab Cardiovasc Dis. 2014;24(3):277-85.

  37. Wu N, Qin Y, Chen S, Yu C, Xu Y, Zhao J, etal. Association between metabolic syndrome andincident chronic kidney disease among Chinese: Anation-wide cohort study and updated meta-analysis.Diabetes Metab Res Rev. 2021;37(7):e3437.

  38. Bystad EW, Stefansson VTN, Eriksen BO, MelsomT. The Association Between Metabolic Syndrome,Hyperfiltration, and Long-Term GFR Decline in theGeneral Population. Kidney Int Rep. 2023;8(9):1831-40.

  39. Endlich N, Endlich K. The challenge and responseof podocytes to glomerular hypertension. SeminNephrol. 2012;32(4):327-41.

  40. Srivastava T, Thiagarajan G, Alon US, SharmaR, El-Meanawy A, McCarthy ET, et al. Role ofbiomechanical forces in hyperfiltration-mediatedglomerular injury in congenital anomalies of thekidney and urinary tract. Nephrol Dial Transplant.2017;32(5):759-65.

  41. Tobar A, Ori Y, Benchetrit S, Milo G, Herman-Edelstein M, Zingerman B, et al. Proximal tubularhypertrophy and enlarged glomerular and proximaltubular urinary space in obese subjects withproteinuria. PLoS One. 2013;8(9):e75547.

  42. Weinbaum S, Duan Y, Satlin LM, Wang T, WeinsteinAM. Mechanotransduction in the renal tubule. Am JPhysiol Renal Physiol. 2010;299(6):F1220-36.

  43. Chagnac A, Herman M, Zingerman B, ErmanA, Rozen-Zvi B, Hirsh J, et al. Obesity-inducedglomerular hyperfiltration: its involvement inthe pathogenesis of tubular sodium reabsorption.Nephrol Dial Transplant. 2008;23(12):3946-52.

  44. Vallon V, Thomson SC. Renal function indiabetic disease models: the tubular system in thepathophysiology of the diabetic kidney. Annu RevPhysiol. 2012;74:351-75.

  45. Sharma S, Smyth B. From Proteinuria to Fibrosis:An Update on Pathophysiology and TreatmentOptions. Kidney and Blood Pressure Research.2021;46(4):411-20.

  46. Cortinovis M, Ruggenenti P, Remuzzi G.Progression, Remission and Regression of ChronicRenal Diseases. Nephron. 2016;134(1):20-4.

  47. Kalantar-Zadeh K, Jafar TH, Nitsch D, NeuenBL, Perkovic V. Chronic kidney disease. Lancet.2021;398(10302):786-802.

  48. Harrap SB, Cumming AD, Davies DL, Foy CJ, FraserR, Kamitani A, et al. Glomerular hyperfiltration,high renin, and low- extracellular volume in highblood pressure. Hypertension. 2000;35(4):952-7.

  49. Shilpasree AS, Patil VS, Revanasiddappa M, PatilVP, Ireshnavar D. Renal Dysfunction in Prediabetes:Confirmed by Glomerular Hyperfiltration andAlbuminuria. J Lab Physicians. 2021;13(3):257-62.

  50. Stackhouse S, Miller PL, Park SK, Meyer TW.Reversal of glomerular hyperfiltration and renalhypertrophy by blood glucose normalization indiabetic rats. Diabetes. 1990;39(8):989-95.

  51. Weil EJ, Kobes S, Jones LI, Hanson RL. Glycemiaaffects glomerular filtration rate in people with type2 diabetes. BMC Nephrol. 2019;20(1):397.

  52. Joshi S, McMacken M, Kalantar-Zadeh K. Plant-Based Diets for Kidney Disease: A Guide forClinicians. American Journal of Kidney Diseases.2021;77(2):287-96.

  53. Brenner BM, Meyer TW, Hostetter TH. Dietaryprotein intake and the progressive nature ofkidney disease: the role of hemodynamicallymediated glomerular injury in the pathogenesis ofprogressive glomerular sclerosis in aging, renalablation, and intrinsic renal disease. N Engl J Med.1982;307(11):652-9.

  54. Wheeler ML, Fineberg SE, Fineberg NS,Gibson RG, Hackward LL. Animal versusplant protein meals in individuals with type 2diabetes and microalbuminuria: effects on renal,glycemic, and lipid parameters. Diabetes Care.2002;25(8):1277-82.

  55. Hostetter TH, Meyer TW, Rennke HG, BrennerBM. Chronic effects of dietary protein in the ratwith intact and reduced renal mass. Kidney Int.1986;30(4):509-17.

  56. Kontessis P, Jones S, Dodds R, Trevisan R, NosadiniR, Fioretto P, et al. Renal, metabolic and hormonalresponses to ingestion of animal and vegetableproteins. Kidney Int. 1990;38(1):136-44.

  57. Gretz N, Meisinger E, Strauch M. Hyperfiltrationdue to amino and keto acid supplements oflow-protein diets: influence on creatinine clearance.Infusionsther Klin Ernahr. 1987;14 Suppl 5:30-3.

  58. Klahr S, Levey AS, Beck GJ, Caggiula AW,Hunsicker L, Kusek JW, et al. The effects of dietaryprotein restriction and blood-pressure control on theprogression of chronic renal disease. Modification ofDiet in Renal Disease Study Group. N Engl J Med.1994;330(13):877-84.

  59. Sakaguchi Y, Kaimori J-Y, Isaka Y. Plant-DominantLow Protein Diet: A Potential Alternative DietaryPractice for Patients with Chronic Kidney Disease.Nutrients. 2023;15(4):1002.

  60. Ngoh CLY, So JBY, Tiong HY, Shabbir A, TeoBW. Effect of weight loss after bariatric surgery onkidney function in a multiethnic Asian population.Surg Obes Relat Dis. 2016;12(3):600-5.

  61. Chagnac A, Weinstein T, Herman M, Hirsh J,Gafter U, Ori Y. The effects of weight loss on renalfunction in patients with severe obesity. J Am SocNephrol. 2003;14(6):1480-6.

  62. Navaneethan SD, Yehnert H, Moustarah F,Schreiber MJ, Schauer PR, Beddhu S. Weightloss interventions in chronic kidney disease: asystematic review and meta-analysis. Clin J AmSoc Nephrol. 2009;4(10):1565-74.

  63. Li K, Zou J, Ye Z, Di J, Han X, Zhang H, et al.Effects of Bariatric Surgery on Renal Function inObese Patients: A Systematic Review and MetaAnalysis. PLoS One. 2016;11(10):e0163907.

  64. Szulińska M, Skrypnik D, Ratajczak M,Karolkiewicz J, Madry E, Musialik K, et al. Effectsof Endurance and Endurance-strength Exercise onRenal Function in Abdominally Obese Women withRenal Hyperfiltration: A Prospective RandomizedTrial. Biomed Environ Sci. 2016;29(10):706-12.

  65. Ruggenenti P. Angiotensin-converting enzymeinhibition and angiotensin II antagonism innondiabetic chronic nephropathies. Seminars inNephrology. 2004;24(2):158-67.

  66. Fu Y, Hall JE, Lu D, Lin L, Manning RD, Cheng L,et al. Aldosterone blunts tubuloglomerular feedbackby activating macula densa mineralocorticoidreceptors. Hypertension. 2012;59(3):599-606.

  67. Matthews J, Herat L, Schlaich MP, Matthews V. TheImpact of SGLT2 Inhibitors in the Heart and KidneysRegardless of Diabetes Status. International Journalof Molecular Sciences. 2023;24(18):14243.

  68. Bendotti G, Montefusco L, Pastore I, Lazzaroni E,Lunati ME, Fiorina P. The anti-inflammatory andimmunological properties of SGLT-2 inhibitors.2023 Dec;46(12):2445-2452.

  69. Chen X, Hocher CF, Shen L, Krämer BK,Hocher B. Reno- and cardioprotective molecularmechanisms of SGLT2 inhibitors beyond glycemiccontrol: from bedside to bench. Am J Physiol CellPhysiol. 2023;325(3):C661-C81.

  70. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, vonEynatten M, Mattheus M, et al. Empagliflozin andProgression of Kidney Disease in Type 2 Diabetes.N Engl J Med. 2016;375(4):323-34.

  71. Fletcher RA, Jongs N, Chertow GM, McMurrayJJV, Arnott C, Jardine MJ, et al. Effect of SGLT2Inhibitors on Discontinuation of Renin-angiotensinSystem Blockade: A Joint Analysis of theCREDENCE and DAPA-CKD Trials. J Am SocNephrol. 2023 Dec 1;34(12):1965-1975.

  72. Granata A, Maccarrone R, Anzaldi M, Leonardi G,Pesce F, Amico F, et al. GLP-1 receptor agonists andrenal outcomes in patients with diabetes mellitustype 2 and diabetic kidney disease: state of the art.Clinical Kidney Journal. 2022;15(9):1657-65.

  73. Maruno S, Tanaka T, Nangaku M. Exploringmolecular targets in diabetic kidney disease. KidneyRes Clin Pract. 2022;41(Suppl 2):S33-s45.




2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev Nefrol Dial Traspl. 2025;45