medigraphic.com
SPANISH

Cardiovascular and Metabolic Science

ISSN 2954-3835 (Electronic)
ISSN 2683-2828 (Print)
Antes Revista Mexicana de Cardiología

Ver Revista Mexicana de Cardiología


  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
    • Send manuscript
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2025, Number 2

<< Back Next >>

Cardiovasc Metab Sci 2025; 36 (2)

Atherogenic risk profiles and cardiovascular risk assessment in hospitalized patients with type 2 diabetes

Chale-De la Cruz, Alejandro Ernesto1,2; Quiroz-Gomez, Sergio3,4; Landero-Jiménez, Rubén1,5; Guzmán-Priego, Crystell Guadalupe3,6; Jiménez-Sastré, Alejandro3,7
Full text How to cite this article 10.35366/120544

DOI

DOI: 10.35366/120544
URL: https://dx.doi.org/10.35366/120544

Language: English
References: 26
Page: 95-103
PDF size: 395.80 Kb.


Key words:

cardiology, atherogenic, diabetes mellitus, cardiovascular risk.

ABSTRACT

Introduction: cardiovascular diseases are the leading cause of morbidity and mortality among individuals with type two diabetes mellitus, affecting adults aged 20 to 79 years. Objective: the study aims to correlate atherogenic risk factors with the duration of diabetes diagnosis to determine the cardiovascular risk of patients in a hospital ward. Material and methods: this observational, correlational, and cross-sectional study was conducted at the Center of Medical Specialties of the Instituto de Seguridad Social del Estado de Tabasco from January to June 2024. A representative sample of three hundred forty-three patients was selected from a population of 3,193, using a 95% confidence level and a five percent margin of error. The Framingham cardiovascular risk prediction table was adapted, achieving validation with a Cronbach's alpha coefficient of 0.770. Results: among the three hundred forty-three patients evaluated, 39 (11.4%) were found to have a high risk of experiencing a cardiovascular event within the next 10 years. A significant positive correlation was found between cardiovascular risk and the duration since the diagnosis of type 2 diabetes, with a p-value of 0.003. Conclusion: the findings confirm that the duration of diabetes is a significant determinant of cardiovascular risk in hospitalized patients.



ABBREVIATIONS:

  • ARFs = Atherosclerotic Risk Factors
  • BMI = Body Mass Index
  • CKD = Chronic Kidney Disease
  • CVD = Cardiovascular Diseases
  • CVR = Cardiovascular Risk
  • DM2 = Type 2 Diabetes Mellitus
  • IDF = International Diabetes Federation
  • INEGI = Instituto Nacional de Estadística y Geografía (National Institute of Statistics and Geography)
  • SD = Standard Deviation



INTRODUCTION

Cardiovascular disease is the leading cause of morbidity and mortality in individuals with type 2 diabetes mellitus (DM2), especially in adults aged 20 to 79 years.1 This disease has gained increasing relevance as a health concern due to its high prevalence and the severe complications it causes.

In Mexico, the prevalence of type 2 diabetes is also alarming. According to the 2021 World Diabetes Day Statistics report from the Instituto Nacional de Estadística y Geografía (INEGI), 10.3% of the population aged 20 years or older (equivalent to 8,542,718 individuals) has been diagnosed with diabetes mellitus. By 2001, 16.1% of the population aged 53 years or older had been diagnosed with diabetes (14.1% in men and 17.8% in women). By 2021, this percentage had risen to 25.6% (22.5% in men and 28.1% in women).2 However, it is estimated that around 60% of individuals with type 2 diabetes are unaware they have the disease, which significantly increases the risk of severe complications, including cardiovascular diseases, renal failure, and other related issues.3

The complications associated with type 2 diabetes have a devastating impact on global health. According to the Diabetes Atlas of the International Diabetes Federation (IDF), complications of DM2 caused approximately 4.2 million deaths worldwide in 2019.1 These complications include cardiovascular diseases, renal failure, blindness, and amputations, which severely affect patients' quality of life and represent a significant portion of hospital admissions. Diabetes complications often require urgent intervention and early diagnosis, which includes proper treatment.4

Globally, it is estimated that a heart attack occurs every four seconds. In the United States, this event happens every 26 seconds, while in Mexico, it is estimated to occur every three minutes.5,6 INEGI reports that although mortality rates from type 2 diabetes have decreased in recent years, from 119.5 per 100,000 inhabitants in 2020 to 89.4 in 2022, diabetes remains one of the leading causes of death, especially among adults aged 65 years and older. By 2023, mortality rates continued to decrease compared to those reported in 2022.7



ATHEROGENIC RISK FACTORS IN TYPE 2 DIABETES

DM2 often develops years before clinical diagnosis and is strongly associated with various atherosclerotic risk factors (ARFs). These ARFs directly contribute to the progression and severity of DM2, including dyslipidemia, hypertension (HTN), and obesity, all of which significantly elevate cardiovascular risk in these patients.8,9 Therefore, identifying and managing these risk factors is essential to reducing the incidence and severity of cardiovascular diseases (CVD) in individuals with DM2.10



CARDIOVASCULAR RISK IN TYPE 2 DIABETES MELLITUS

Cardiovascular risk (CVR) refers to the probability of developing CVD, such as coronary artery disease, stroke, or peripheral arterial disease. Alarmingly, around 80% of deaths in individuals with DM2 result from vascular complications, with ischemic heart disease accounting for 40% and cerebral ischemia for 10%.

Patients with DM2 often face a combination of risk factors that exacerbate their CVR, including tobacco use, physical inactivity, nonadherence to treatment regimens, prolonged disease duration, and the presence of complications.11,12 Notably, the duration of diabetes is a key determinant, as extended progression increases the risk of conditions affecting multiple organ systems.13



CARDIOVASCULAR RISK AND HOSPITALIZATION OF PATIENTS

Hospitalized patients with DM2 are at heightened risk of developing severe vascular complications due to multiple predisposing factors. Scientific evidence highlights that cardio-atherogenic factors often influenced by lifestyle can disrupt blood flow and lead to critical cardiac events.14-16

In Mexico, during the first quarter of 2024, the Epidemiological Surveillance System for DM2 recorded 11,083 hospitalizations of patients diagnosed with DM2, with Tabasco reporting the highest number of cases. Among these, the most common comorbidities included hypertension (affecting 6,705 individuals, 60.50%), obesity (1,488 cases, 13.43%), and chronic kidney disease (CKD) (1,433 cases, 12.93%). Hypertension is a major trigger for life-threatening events like acute myocardial infarction and cerebrovascular accidents, as evidenced by SINAVE data.17



EARLY INTERVENTION IN GLUCOSE CONTROL

Timely intervention in glucose control to achieve the recommended HbA1c targets (≤ 7%) significantly reduces the onset and progression of DM2-related complications. However, the benefits of intensive glycemic control take time to manifest, making early intervention particularly advantageous for younger patients. Weight loss of 10 to 15% also contributes to substantial metabolic improvements.18

For example, studies demonstrate that early glycemic control is associated with a lower incidence of microvascular complications, such as retinopathy and nephropathy, as well as a delay in the progression of macrovascular complications like myocardial infarction. These findings highlight the importance of early and sustained glycemic management to improve long-term outcomes in DM2 patients.



ADAPTED FRAMINGHAM RISK SCORE FOR HOSPITALIZED DM2 PATIENTS

The Framingham Risk Score has been adapted to address limitations in assessing CVR among hospitalized DM2 patients. The original version does not adequately account for factors such as treatment regimens, body mass index (BMI), duration of disease, or gender differences, which are elements critical for accurate risk estimation in this population.19-22

This modified score incorporates these variables, providing a more tailored and reliable assessment of CVR in hospitalized DM2 patients. By offering a contextualized risk evaluation, the adapted score enhances clinical decision-making and supports the prioritization of interventions aimed at reducing cardiovascular morbidity and mortality.

The objective of this study is to establish a correlation between the time of being diabetic and the presence of atherogenic risk factors to understand better and define the cardiovascular risk profile of patients hospitalized with type 2 diabetes mellitus (DM2).



MATERIAL AND METHODS

An observational, correlational, and cross-sectional study was conducted. The study population consisted of patients diagnosed with DM2 who were hospitalized at the Medical Specialty Center of the Instituto de Seguridad Social del Estado de Tabasco (ISSET), Mexico, between January and June 2024.

The sample size was calculated by a random test from a population of 3,193 patients, with a confidence level of 95% and a margin of error of five percent, resulting in a sample of 343 patients.

Following the corresponding authorization from the Teaching Committee of the ISSET and obtaining the JI-LCT-179 registry from the Research Center of the Universidad Juárez Autónoma de Tabasco, patients aged 40 to 79 years with clinical records and social security numbers were identified.



RATIONALE FOR ADJUSTING THE RISK SCORE

Diabetes mellitus is a well-established risk factor for microvascular (e.g., retinopathy, nephropathy) and macrovascular (e.g., coronary artery disease, stroke) complications. However, appropriate treatment can significantly delay or even prevent these serious outcomes, emphasizing the importance of personalized cardiovascular risk assessments.

Patients hospitalized with DM2 are often exposed to additional risk factors, such as acute metabolic dysregulation, immobility, and stress, which can accelerate the progression of vascular complications and increase the likelihood of fatal outcomes.

To conduct a comprehensive cardiovascular risk assessment, the Framingham Risk Score was adjusted to include additional variables that are particularly relevant for hospitalized patients with type 2 diabetes mellitus (DM2). While the Framingham Risk Score is widely validated for predicting cardiovascular risk in the general population, it may not fully account for the unique risk factors seen in hospitalized DM2 patients.

To address these limitations, the score was adapted to include the following: Time since diabetes diagnosis, Documented complications in the past five years, and Adherence to diabetes treatment. These adjustments are intended to provide a more nuanced and accurate risk stratification for this specific group (Figures 1 and 2).

The data were collected from clinical records in accordance with the ethical guidelines established in NOM-004-SSA3-2012, the General Health Law, and the Federal Law on the Protection of Personal Data Held by Private Parties. The information collected included age, sex, body mass index, blood pressure, lipid profile, HbA1c levels, and any documented complications related to diabetes.

The study adhered to the principles of the Declaration of Helsinki, ensuring the protection of the health, rights, and dignity of the participants. This included obtaining informed consent, safeguarding personal information, and assessing the risks and benefits associated with the research.



RESULTS

Upon examination of the sociodemographic data, the mean age with a standard deviation (SD) was 59.66 ± 9.57 years, with a predominance of females, representing 180 (52.5%) of the records. Marital status was also examined, with 249 (72.6%) patients being married (Table 1), which could potentially influence adherence to treatment and emotional support.

A review of the clinical records revealed that 337 patients (98.3%) had complete records. Of this subset, 243 patients (78%) had more than 10 years with the diagnosis of diabetes. Furthermore, 320 (93.5%) patients had been hospitalized in the last five years due to mild complications, and 305 (89.5%) patients had an active treatment plan (Table 2).

The mean and standard deviation of body mass index (BMI) was 27.50 ± 6.13, with 132 (38.5%) patients classified as overweight at the time of the study. Additionally, 87.7% of patients were non-smokers.

Regarding arterial hypertension, 65.3% of patients were hypertensive. Among them, 36.7% had controlled hypertension, while 28.6% had uncontrolled hypertension, further categorized as grade I (18.7%), grade II (7.9%), and grade III (2%). This highlights that while a significant proportion of patients achieved blood pressure control, a considerable subgroup remains with moderate to severe hypertension, elevating their risk for cardiovascular events.

In the glycemic control section, 52.4% of patients demonstrated effective glycemic control. Regarding dyslipidemia, 63.6% of patients had normal cholesterol and triglyceride levels (Table 3). A modified table was used to calculate cardiovascular risk, revealing that 44 patients (12.8%) had low risk, 132 patients (38.5%) had mild risk, 128 patients (37.3%) had moderate risk, and 39 patients (11.4%) had high risk of experiencing a cardiovascular event within the next 10 years (Table 4; Figure 3).

Spearman's correlation analysis revealed positive correlations between BMI and dyslipidemia (p = 0.158, p = 0.003), hypertension (p = 0.200, p < 0.001), and smoking (ρ = 0.118, p = 0.029), indicating that BMI is a primary cardiovascular risk factor. Dyslipidemia was also significantly associated with hypertension (ρ = 0.299, p < 0.001) and poor diabetes control as indicated by HbA1c (p = 0.119, p = 0.028), which in turn predisposes individuals to cardiovascular disease (Table 5).



DISCUSSION

This study identified a significant prevalence of moderate and high cardiovascular risk in patients with type 2 diabetes, particularly in those with hypertension, poor glycemic control, and obesity. Our results contrast with those reported by Bacuilima-Zhañay et al.,4 in whom low cardiovascular risk predominated over five years. This difference could be explained by the population characteristics and the better glycemic control observed in their sample, which reduced the proportion of long-term cardiovascular complications.

Compared to Vega-Jiménez et al.,19 our population has a higher rate of glycemic control (52.4% versus 41%), which correlates with a higher proportion of moderate and high risk in our study. These results highlight the influence of glycemic control on cardiovascular risk classification, a finding consistent with previous literature. Similarly, Zamora-Fung et al.23 reported 80.2% of their population as low risk, which could also be attributed to better glycemic control (58.7%) compared to our sample.

The study by Zalapa-Farias et al.,24 which reported a similar prevalence of dyslipidemia (41%), underscores the importance of glycemic control as a key determinant. Although both populations have a high prevalence of dyslipidemia, the lower proportion of patients with glycemic control in their population (41% versus 52.4% in our study) may explain the observed differences in risk classification.

On the other hand, Poll-Cabrera et al.25 included additional factors, such as hypertriglyceridemia and chronic kidney disease, in their cardiovascular risk assessment, which were not included in our sample. This may explain the higher prevalence of severe cardiovascular risk in their population compared with the 11.4% high risk observed in our study. The inclusion of these factors could enrich future predictive models and provide a more comprehensive view of cardiovascular risk in patients with type 2 diabetes.

Finally, a comparison with Garza-López et al.,26 who used the Framingham model, highlighted the limitations of this model, particularly its inability to take into account factors such as obesity or duration of diabetes. In contrast, our approach using a modified model allowed for a more balanced distribution of cardiovascular risk, highlighting the importance of adapting models to the specific characteristics of the population studied.

In conclusion, our findings underscore the importance of a personalized approach to cardiovascular risk assessment and management in patients with type 2 diabetes. Factors such as glycemic control, hypertension, and obesity should be prioritized in prevention and treatment strategies. In addition, the inclusion of additional comorbidities and the validation of predictive models tailored to different population contexts are key areas for future research.



CONCLUSION

Comprehensive management of type 2 diabetes should be carefully tailored to the individual needs of each patient. This includes not only glycemic control but also management of major comorbidities, including hypertension, obesity, and other cardiovascular risk factors. The introduction of advanced pharmacological therapies, including Glucagon-Like Peptide-1 (GLP-1) receptor agonists (GLP-1 RAs) and SGLT2 inhibitors (SGLT2is), has demonstrated additional benefits beyond glucose lowering. These therapies have been shown to contribute significantly to cardiovascular and renal protection. These developments should be accompanied by the provision of ongoing diabetes self-management education and support (DSMES) programs, which are essential to improve adherence, optimize clinical outcomes, and reduce the risk of long-term complications.

The study results show that the cardiovascular risk profile of hospitalized patients with type 2 diabetes varies widely. The majority of patients are at moderate cardiovascular risk, while a small proportion are at high risk, particularly those with poor adherence. This finding underscores the importance of early intervention and close monitoring of glycemic control and comorbidities to reduce the risk of cardiovascular complications.

Factors such as the duration of diabetes and the presence of comorbidities, including high body mass index and poor glycemic control, have been identified as key determinants of cardiovascular risk profile. Modification of the Framingham Risk Score to incorporate these specific factors related to type 2 diabetes has improved the predictive ability of the model, allowing for more accurate cardiovascular risk stratification. This adjustment facilitates the early identification of high-risk patients and enables the implementation of preventive strategies.

From a clinical perspective, the results suggest that an integrated and personalized approach that addresses both appropriate glycemic control and management of associated comorbidities is critical to reducing cardiovascular risk in hospitalized patients with type 2 diabetes. It is imperative that treatment be individualized, that adherence to the therapeutic regimen be promoted, and that the influence of social and emotional factors in disease management be considered. The integration of these elements may have a significant impact on improving long-term outcomes and quality of life for patients.



ACKNOWLEDGMENTS

We would like to express our gratitude to the Center of Medical Specialties of the Instituto de Seguridad Social del Estado de Tabasco (ISSET) for their invaluable support and permission to conduct this study.


REFERENCES

  1. IDF Diabetes Atlas. Diabetesatlas.org. Available from: https://diabetesatlas.org

  2. Instituto Nacional de Estadística y Geografía (INEGI). 2022. Available from: https://www.inegi.org.mx/contenidos/saladeprensa/aproposito/2022/EAP_DIABETES2022.pdf

  3. American Diabetes Association. Introduction: standards of medical care in diabetes-2022. Diabetes Care. 2022; 45 (Suppl 1): S1-S2. Available from: http://dx.doi.org/10.2337/dc22-sint

  4. Bacuilima P, Ochoa A. Cross-sectional study: cardiovascular risk in type II diabetes mellitus according to UKPDS score in patients from José Carrasco Arteaga Hospital. Rev Med HJCA. 2020; 12 (3): 178-187. http://dx.doi.org/10.14410/2020.12.3.ao.26

  5. Rosas-Peralta M, Arizmendi-Uribe E, Borrayo-Sánchez G. What do adults die from in Mexico? Rev Med Inst Mex Seguro Soc. 2017; 55 (1): 98-103. Available from: http://www.redalyc.org/articulo.oa?id=457749297023

  6. Russo MP, Grande-Ratti MF, Burgos MA, Molaro AA, Bonella MB. Prevalence of diabetes, epidemiological characteristics, and vascular complications. Arch Cardiol Mex. 2023; 93 (1): 93-102. Available from: https://doi.org/10.24875/acm.21000410

  7. National Institute of Statistics and Geography (INEGI). Statistics of registered deaths (EDR) 2023. 2024. Available from: https://www.inegi.org.mx/contenidos/saladeprensa/boletines/2024/EDR/EDR2023_Dtivas.pdf

  8. Davidson MH, Pradeep P. Dyslipidemia. MSD Manual Professional Version. Available from: https://www.msdmanuals.com/es-mx/professional/trastornos-endocrinol%C3%B3gicos-y-metab%C3%B3licos/trastornos-de-los-l%C3%ADpidos/dislipidemia

  9. Millán J, Pintó X, Muñoz A, Zúñiga M, Rubiés-Prat J, Pallardo LF et al. Lipoprotein ratios: physiological significance and clinical utility of atherogenic indices in cardiovascular prevention. Clin Investig Arterioscler. 2010; 22 (1): 25-32.

  10. Press Room. Press release. Instituto Nacional de Estadística y Geografía (INEGI); 2024. Available from: https://www.inegi.org.mx/app/saladeprensa/noticia.html?id=7746

  11. Instituto Nacional de Estadística y Geografía (INEGI). Estadísticas de defunciones registradas (EDR) de enero a junio de 2023 (preliminar). 2024. Available from: https://www.inegi.org.mx/contenidos/saladeprensa/boletines/2024/EDR/EDR2023_En-Jn.pdf

  12. Alonso-Martínez MI, Ferrer-Arrocha M, Carballo-Martínez R. Atherosclerotic risk factors in relatives of type 2 diabetic patients. Rev Cuba Investig Bioméd. 2014; 33 (4): 367-376. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03002014000400003

  13. Alfonso GJ. Obesity. Epidemic of the 21st century. Type 2 diabetes mellitus and obesity. Editorial Científico Técnica; 2008. p. 208.

  14. Rodríguez-Scull LE. Obesity and its clinic-metabolic consequences. Rev Cub Endocrinol. 2004; 15 (3). Available from: http://www.imbiomed.com.mx/1/1/articulos.php?method=showDetail&id_articulo=31936&id_seccion=709&id_ejemplar=3284&id_revista=58

  15. Sedentary lifestyle. Sedentarism, diet, obesity, alcohol, and tobacco consumption as risk factors for the development of type 2 diabetes. Available from: http://dx.doi.org/10.19230/jonnpr.3068

  16. Álvarez-Cosmea A. Cardiovascular risk tables: a critical review. Medifam. 2001; 11 (3): 20-51. Available from: https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1131-57682001000300002

  17. Gobierno de México. Informe sobre la situación de salud y el avance de la Estrategia Nacional para la Prevención y Control de Enfermedades Crónicas No Transmisibles, Primer trimestre 2024. Secretaría de Salud; 2024. Available from: https://www.gob.mx/cms/uploads/attachment/file/909922/Informe_SVEHDMT2_1ertrim_2024.pdf

  18. Davies MJ, Aroda VR, Collins BS, Gabbay RA, Green J, Maruthur NM et al. Management of hyperglycemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2022; 45 (11): 2753-2786. Available from: https://doi.org/10.2337/dci22-0034

  19. Vega-Jiménez J, Verano-Gómez NC, Rodríguez-López JF, Labrada-González E, Sánchez-Garrido A, Espinosa-Pire LN. Cardioatherogenic factors and cardiovascular risk in hospitalized type 2 diabetics. Rev Cuba Med Mil. 2018; 47 (2). Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0138-65572018000200006

  20. Iván ZFT, Berenica PMB, Keren FMR, Gloria NF, Juan RS. Level of knowledge of cardiovascular risk factors in patients with type 2 diabetes mellitus. 2022; 36 (1): 49. Available from: https://www.imbiomed.com.mx/articulo.php?id=117354

  21. López-Díaz JM, García-Ugalde JP. Cardiovascular risk factors associated with diabetic foot. Rev Méd Sinergia. 2019; 4 (3): 4-20. Available from: https://doi.org/10.31434/rms.v4i3.176

  22. Silva-Saboya G. Risk factors associated with type 2 diabetes mellitus in adults treated at IPRESS I-3 Belén 2021. Univ Cient Peru; 2021. Available from: http://repositorio.ucp.edu.pe/items/a5487e62-547f-4cbf-a3ae-35c10a22b3a7

  23. Zamora-Fung R, Blanc-Márquez A, García-Gázquez JJ, Borrego-Moreno Y, Fundora-Gonzalez C. Estimation of cardiovascular risk in patients with type 2 diabetes mellitus at a medical office. Univ Med Pinareña. 2020; 16(1). Available from: https://revgaleno.sld.cu/index.php/ump/article/view/384/pdf

  24. Zalapa-Farias TI, Perez-Martinez BB, Fernandez-Mancilla RK, Floriano GN, Romo-Salazar JC. Level of knowledge of cardiovascular risk factors in patients with type 2 diabetes mellitus. Rev Esc Med Dr. J. Sierra. 2022; 36 (1): 49-54.

  25. Poll-Cabrera M, Hierrezuelo-Rojas N, Soto-Bell Y, Begó-Godínez J, Velazquez-Cedeño I, Acosta-Montero D. Estimación del riesgo cardiovascular en pacientes con diabetes mellitus tipo 2. Arch Méd Camagüey. 2024; 28: e9965. Available from: https://revistaamc.sld.cu/index.php/amc/article/view/9965

  26. Garza-López EP, Silva-Ruiz R, Rodríguez-Pérez CV. Cardiovascular risk estimation in Mexican patients with type 2 diabetes mellitus. Rev Investig Clín. 2024; 76 (3): 226-236. Available from: https://doi.org/10.24875/ric.21000012



AFFILIATIONS

1 Bachelor's degree. Medical Surgeon Student. Universidad Juárez Autónoma de Tabasco (UJAT), Academic Division of Health Sciences. Villahermosa, Tabasco, México.

3 PhD. Research Professor. UJAT, Academic Division of Health Sciences. Villahermosa, Tabasco, México.
ORCID:

2 0009-0002-7595-1006

4 0000-0003-3703-8283

5 0009-0007-7712-983X

6 0000-0002-8228-1314

7 0000-0002-9526-9429



Declaration of confidentiality and patients consent

Research protocol: ´´Atherogenic risk profiles and cardiovascular risk assessment in hospitalized patients with type 2 diabetes´´ with protocol folio JI-LCT-179. This protocol has been previously analyzed and accepted by the Research Committee of the Academic Division of Health Sciences of the Universidad Juárez Autónoma de Tabasco.
The authors confirm that they have complied with the pertinent work protocols for the use of patient data. In addition, the authors confirm that the patient has been duly informed and has given written informed consent for the publication of his or her images and other clinical information in the journal without any identifying details in order to safeguard his or her right to privacy. Furthermore, the authors attest that no form of generative artificial intelligence has been employed in the preparation of this manuscript or in the creation of figures, graphs, tables, or their corresponding captions or legends.
Clinical trial registration and approval number protocol folio JI-LCT-179, previously analyzed and accepted by the Research Committee of the Academic Division of Health Sciences of the Universidad Juárez Autónoma de Tabasco.

Funding: this research has not received funding from public sector agencies, private sector, or non-profit entities.

Declaration of interests: the authors declare that they have no conflicts of interest.

Acknowledgement: we thank the Medical Specialties Center of the Instituto de Seguridad Social del Estado de Tabasco (ISSET) for providing support and allowing this study to be carried out.



CORRESPONDENCE

Sergio Quiroz-Gomez. E-mail: sergio.quiroz@ujat.mx




Received: 09/09/2024. Accepted: 02/14/2025

Figure 1
Figure 2
Figure 3
Table 1
Table 2
Table 3
Table 4
Table 5

2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Cardiovasc Metab Sci . 2025;36