2025, Number 1
<< Back Next >>
Rev Educ Bioquimica 2025; 44 (1)
Los transportadores SWEETS: proteínas esenciales en el transporte de azúcares en las plantas
López-Coria M, King-Díaz B, Sánchez-Nieto S
Language: Spanish
References: 45
Page: 10-23
PDF size: 1536.69 Kb.
ABSTRACT
Plants are a mosaic of autotrophic and heterotrophic tissues. The first are named source tissues and they can export sugars at the phloem at a concen-tration of 0.34 to 1.5 M. The heterotrophic tissues, named sink tissues, depend on the sugars that the source tissues export. Sugar transport between both tissues is vital for the plant and occurs by means of the symplastic and apoplastic pathways. In the symplastic pathway, sugars are mobilized through cell-cell connections named plasmodesmata. In the apoplastic pathway, the sugar influx and efflux from cells are mediated by membrane transporters like the SWEETs transporters which mobilize glucose, fructose, or sucrose down the concentration gradient. SWEETs are needed for the massive movement of sugars in phloem loading, nectar formation throughout embryogenesis, seed germination, and plant-pathogen interaction. Understanding the function of SWEETs may help increase the productivity of plants.
REFERENCES
Dinant S, Bonnemain J-L, Girousse C, Kehr J.Phloem sap intricacy and interplay with aphidfeeding. C. R. Biologies 2010; 333(6–7): 504–15.
Nadwodnik J, Lohaus G. Subcellular concentrations of sugar alcohols and sugars in relation to phloem translocation in Plantago major, Plantago maritima, Prunus persica, and Apium graveolens. Planta 2008; 227: 1079–89.
NCD Risk Factor Collaboration. Worldwidetrends in diabetes since 1980: a pooled analysisof 751 population-based studies with 4·4 millionparticipants. Lancet 2016; 387: 1513–30.
Feng L, Frommer WB. Structure and function ofSemiSWEET and SWEET sugar transporters.TIBS 2015; 40(8): 480–6.
5.Liu YH, Song YH, Ruan YL. Sugar conundrumin plant-pathogen interactions: roles of invertaseand sugar transporters depend on pathosystems.J.Exp. Bot. 2022; 73(7): 1910-25.
Chen L-Q, Cheung LS, Feng L, Tanner W,Frommer WB. Transport of Sugars. Annu RevBiochem 2015; 84(1): 865–94.
Kühn C. A comparison of the sucrosetransporter systems of different plant species.Plant Biol. 2003; 5(3): 215–32.
Salvi P, Agarrwal R, Kajal, Gandass N, MannaM, Kaur H, Deshmukh R. Sugar transportersand their molecular tradeoffs during abioticstress responses in plants. Physiol. Plant. 2022;174(2): e13652.
Quirino BF, Reiter WD, Amasino RD. One oftwo tandem Arabidopsis genes homologous tomonosaccharide transporters is senescence-associated. Plant Mol. Biol. 2001; 46(4): 447–57.
Bavnhøj L, Paulsen PA, Flores-Canales JC,Schiøtt B, Pedersen BP. Molecular mechanismof sugar transport in plants unveiled bystructures of glucose/H+ symporter STP10. Nat.Plants 2021; 7(10): 1409–19.
Sun Y, Reinders A, Lafleur KR, Mori T, WardJM. Transport activity of rice sucrose transporters OsSUT1 and OsSUT5. Plant Cell Physiol. 2010; 51(1): 114–122.
Focht D, Croll TI, Pedersen BP, Nissen P.Improved model of proton pump crystal structure obtained by interactive molecular dynamics flexible fitting expands the mechanistic model for proton translocation in P-type ATPases. Front. Physiol. 2017; 8: 202.
Riesmeier JW, Willmitzer L, Frommer, WB.Isolation and characterization of a sucrosecarrier cDNA from spinach by functionalexpression in yeast. EMBO J. 1992; 11(13),4705–13.
Carpaneto A, Geiger D, Bamberg E, Sauer N,Fromm J, Hedrich R. Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediatessucrose efflux under the control of the sucrosegradient and the proton motive force. J BiolChem. 2005; 280(22): 21437-43.
Chen LQ, Hou BH, Lalonde S, Takanaga H,Hartung ML, Qu XQ, Guo WJ, Kim JG,Underwood W, Chaudhuri B, Chermak D,Antony G, White FF, Somerville SC, MudgettMB, Frommer WB. Sugar transporters forintercellular exchange and nutrition ofpathogens. Nature 2010; 468(7323): 527–32.
Baker RF, Leach KA, Braun DM. SWEET assugar: New sucrose effluxers in plants. Mol.Plant 2012; 5(4): 766–68.
Tao Y, Cheung LS, Li S, Eom JS, Chen LQ, XuY, Perry K, Frommer WB, Feng L. Structure ofa eukaryotic SWEET transporter in ahomotrimeric complex. Nature 2015;527(7577): 259–63.
Han L, Zhu Y, Liu M, Zhou Y, Lu G, Lan L,Wang X, Zhao Y, Zhang XC. Molecularmechanism of substrate recognition andtransport by the AtSWEET13 sugar transporter.Proc Natl Acad Sci USA 2017; 114(38): 10089–94.
Eom JS, Chen LQ, Sosso D, Julius BT, Lin IW,Qu XQ, Braun DM, Frommer WB. SWEETs,transporters for intracellular and intercellularsugar translocation. Curr. Opin. Plant Biol.2015; 25: 53–62.
Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S,Fernie AR, Frommer WB. Sucrose effluxmediated by SWEET proteins as a key step forphloem transport. Science 2012; 335(6065):207–11.
Büttner M (2010) The Arabidopsis sugartransporter (AtSTP) family: an update. PlantBiol. 12: 35–41.
Yuan M, Wang S. Rice MtN3/saliva/SWEETfamily genes and their homologs in cellularorganisms. Mol Plant 2013; 6(3): 665–74.
Roy R, Schmitt AJ, Thomas JB, Carter CJ.Review: Nectar biology: From molecules toecosystems. Plant Sci 2017; 262: 148–64.
Lin IW, Sosso D, Chen LQ, Gase K, Kim SG,Kessler D, Klinkenberg PM, Gorder MK, HouBH, Qu XQ, Carter CJ, Baldwin IT, FrommerWB. Nectar secretion requires sucrosephosphate synthases and the sugar transporterSWEET9. Nature 2014; 508(7497): 546–9.
Sripathy KV, Groot SPC. Seed Developmentand Maturation. En: Dadlani M, Yadava DK(editores) Seed Science and Technology.Springer, Singapore; 2023, p. 17-38.https://doi.org/10.1007/978-981-19-5888-5_2
Chen LQ, Lin IW, Qu XQ, Sosso D, McFarlaneHE, Londoño A, Samuels AL, Frommer WB. Acascade of sequentially expressed sucrosetransporters in the seed coat and endospermprovides nutrition for the Arabidopsis embryo.Plant Cell 2015; 27(3): 607–19.
Sosso D, Luo D, Li QB, Sasse J, Yang J,Gendrot G, Suzuki M, Koch KE, McCarty DR,Chourey PS, Rogowsky PM, Ross-Ibarra J,Yang B, Fromme, WB. Seed filling indomesticated maize and rice depends onSWEET-mediated hexose transport. Nat. Genet.2015; 47(12): 1489–93.
López-Coria M, Sánchez-Sánchez T, Martínez-Marcelo VH, Aguilera-Alvarado GP, Flores-Barrera M, King-Díaz B, Sánchez-Nieto S.SWEET transporters for the nourishment ofembryonic tissues during maize germination.Genes 2019; 10: 780.
Streubel J, Pesce C, Hutin M, Koebnik R, BochJ, Szurek B. Five phylogenetically close riceSWEET genes confer TAL effector-mediatedsusceptibility to Xanthomonas oryzae pv.oryzae. New Phytol. 2013; 200(3): 808–19.
30.Cohn M, Bart RS, Shybut M, Dahlbeck D,Gomez M, Morbitzer R, Hou BH, FrommerWB, Lahaye T, Staskawicz BJ. Xanthomonasaxonopodis virulence is promoted by atranscription activator-like effector - mediatedinduction of a SWEET sugar transporter inCassava. Mol. Plant-Microbe Interact. 2014;27(11): 1186–98.
Cox K, Meng F, Wilkins K, Li F, Wang P,Booher NJ, et al. TAL effector driven inductionof a SWEET gene confers susceptibility tobacterial blight of cotton. Nat Commun. 2017;8, 15588.
Sugiyama, A., Saida, Y., Yoshimizu, M.,Takanashi, K., Sosso, D., Frommer, W. B. yYazaki, K. Molecular characterization ofLjSWEET3, a sugar transporter in nodules ofLotus japonica. Plant Cell Physiol. 2016; 58,298-306.
Manck-Götzenberger J, Requena N. Arbuscularmycorrhiza symbiosis induces a majortranscriptional reprogramming of the potatoSWEET sugar transporter family. Front. PlantSci. 2016; 7: 487.
Chen HY, Huh JH, Yu YC, Ho LH, Chen LQ,Tholl D, et al. The Arabidopsis vacuolar sugartransporter SWEET2 limits carbonsequestration from roots and restricts Pythiuminfection. Plant J. 2015; 83(6), 1048-58.
López-Coria M, Guzmán-Chávez F, Carvente-García R, Muñoz-Chapul D, Sánchez-SánchezT, Arciniega-Ruíz JM, King-Díaz B, Sánchez-Nieto S. Maize plant expresses SWEETtransporters differently when interactingwith Trichoderma asperellum and Fusariumverticillioides, two fungi with differentlifestyles. Front. Plant Sci. 2023; 14: 1253741.
Bezrutczyk M, Hartwig T, Horschman M, CharSN, Yang J, Yang B, Frommer WB, Sosso D.Impaired phloem loading in zmsweet13a,b,csucrose transporter triple knock-out mutants inZea mays. New Phytol. 2018; 218(2): 594–603.
Ma Z, Bykova NV, Igamberdiev AU. Cellsignaling mechanisms and metabolic regulationof germination and dormancy in barley seeds.Crop J. 2017; 5(6): 459–77.
Fei H, Yang Z, Lu Q, Wen X, Zhang Y, ZhangA, Lu C. OsSWEET14 cooperates withOsSWEET11 to contribute to grain filling inrice. Plant Sci 2021; 306: 100851.
Yang J, Luo D, Yang B, Frommer WB, Eom JS.SWEET11 and 15 as key players in seed fillingin rice. New. Phytol. 2018; 218(2): 604–15.
Klemens PAW, Patzke K, Deitmer J, Spinner L,Le Hir R, Bellini C, Bedu M, Chardon F, KrappA, Neuhaus HE. Overexpression of the vacuolarsugar carrier AtSWEET16 modifiesgermination, growth, and stress tolerance inArabidopsis. Plant Physiol. 2013; 163(3): 1338–52.
Yang G, Xu H, Zou Q, Zhang J, Jiang S, FangH, Wang Y, Su M, Wang N, Chen X. Thevacuolar membrane sucrose transporterMdSWEET16 plays essential roles in the coldtolerance of apple. Plant Cell Tiss. Organ Cult.2020; 140: 129–42.
Lu J, Sun M, Ma Q, Kang H, Liu Y, Hao Y, YouC.MdSWEET17, a sugar transporter in apple,enhances drought tolerance in tomato. J. Int.Agric. 2019; 18(9): 2041–51.
Kanno Y, Oikawa T, Chiba Y, Ishimaru Y,Shimizu T, Sano N, Koshiba T, Kamiya Y, UedaM, Seo M. AtSWEET13 and AtSWEET14regulate gibberellin-mediated physiologicalprocesses. Nat. Commun. 2016; 7: 1–11.
Morii M, Sugihara A, Takehara S, Kanno Y,Kawai K, Hobo T, et al. The dual function ofOsSWEET3a as a gibberellin and glucosetransporter is important for young shootdevelopment in rice. Plant Cell Physiol. 2020;61(11): 1935–45.
Selvam B, Paul A, Yu Y, Chen L, Shukla D.2024. SWEET family transporters act as waterconducting carrier proteins in plants. DisponibleenbioRxiv 2024.06.23.600272; doi: https://doi.org/10.1101/2024.06.23.600272