medigraphic.com
SPANISH

Toxicología Clínica

  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2025, Number 1

<< Back Next >>

Toxicol Clin 2025; 1 (1)

Advances in mexican snake venom research and their antivenoms: an updated review

Neri-Castro E, Gómez V, Borja M, López LJ, Alagón A
Full text How to cite this article 10.35366/120898

DOI

DOI: 10.35366/120898
URL: https://dx.doi.org/10.35366/120898

Language: Spanish
References: 132
Page: 19-33
PDF size: 444.80 Kb.


Key words:

venomous snakes, vipers, coral snakes, mexican antivenoms, envenomation, poisons.

ABSTRACT

Mexico has the second-highest diversity of venomous snakes in the world and the first in the Americas. However, it is one of the countries with the fewest studies on snake venom characterization globally, and no clinical cases are documented in the literature. In the last 10 years, we have made important efforts in the biochemical and biological characterization of venoms of Mexican species as well as antivenoms. In the present article, we provide recent information on the protein composition of snake venoms and antivenoms and generate information that is available to medical personnel specialized in this area.


REFERENCES

  1. Neri-Castro EE, Bénard-Valle M, Alagón A, Gil G, López de León J, Borja M. Serpientes venenosas en México: una revisión al estudio de los venenos, los antivenenos y la epidemiología. Rev Latin Herp. 2020;3(2):5-22.

  2. Campbell JA, Lamar WW, Brodie ED. The venomous reptiles of the western hemisphere. Ithaca, New York, USA: Cornell University Press; 2004.

  3. Chippaux JP. Snake-bites: appraisal of the global situation. Bull World Health Organ. 1998;76(5):515-24.

  4. Chippaux JP, Goyffon M. Venoms, antivenoms and immunotherapy. Toxicon. 1998;36(6):823-846. doi: 10.1016/S0041-0101(97)00160-8.

  5. Vasquez C, Neri Castro E, Carter ED. Therapeutic itineraries of snakebite victims and antivenom access in southern Mexico. PLoS Negl Trop Dis. 2024;18(7):e0012301. doi: 10.1371/journal.pntd.0012301.

  6. Uetz P. The Reptile Database. Disponible en: http://www.reptile-database.org

  7. Colis-Torres A, Neri-Castro E, Strickland JL, Olvera-Rodríguez A, Borja M, Calvete J, et al. Intraspecific venom variation of Mexican West Coast Rattlesnakes (Crotalus basiliscus) and its implications for antivenom production. Biochimie. 2022;192:111-124. doi: 10.1016/j.biochi.2021.10.006.

  8. Bryson RW Jr, Murphy RW, Lathrop A, Lazcano-Villareal D. Evolutionary drivers of phylogeographical diversity in the highlands of Mexico: a case study of the Crotalus triseriatus species group of montane rattlesnakes: phylogeography of the Crotalus triseriatus group. J Biogeogr. 2011;38(4):697-710. doi: 10.1111/j.1365-2699.2010.02431.x

  9. Saldarriaga MM, Otero R, Núñez V, Toro MF, Díaz A, Gutiérrez JM. Ontogenetic variability of Bothrops atrox and Bothrops asper snake venoms from Colombia. Toxicon. 2003;42(4):405-411. doi: 10.1016/s0041-0101(03)00171-5.

  10. Martínez-Vaca León OL, Bello-Sánchez EA, Morales-Mávil JE. Nuevos registros para la distribución geográfica de la serpiente cornuda mexicana esmeralda Ophryacus smaragdinus, en la zona centro del estado de Veracruz/ New distributional records of the Emerald Horned Pitviper Ophryacus smaragdinus, in central Veracruz. Acta Zool Mex. 2016;32(3):393-397. doi: 10.21829/azm.2016.323976

  11. Grünwald CI, Jones JM, Ahumada-Carrillo IT, Franz-Chávez H. A new species of Ophryacus (Serpentes: Viperidae: Crotalinae) from eastern Mexico with comments of the taxonomy of related pitvipers. Mesoam Herpetol. 2015;2(4):388-416. http://www.herp.mx/pubs/2015-Grunwald-et-al-Ophryacus.pdf

  12. Neri-Castro E, Lomonte B, Valdés M, Ponce-López R, Bénard-Valle M, Borja M, et al. Venom characterization of the three species of Ophryacus and proteomic profiling of O. sphenophrys unveils Sphenotoxin, a novel Crotoxin-like heterodimeric β-neurotoxin. J Proteomics. 2019;192:196-207. doi: 10.1016/j.jprot.2018.09.002.

  13. Neri-Castro E, Zarzosa V, Lomonte B, Zamudio F, Hernandez-Orihuela L, Olvera-Rodríguez A, et al. Exploring venom diversity in Mixcoatlus browni and Mixcoatlus barbouri: a comparative analysis of two rare Mexican snake species with crotoxin-like presence. Biochimie. 2024;225:81-88. doi: 10.1016/j.biochi.2024.05.015.

  14. Neri-Castro E, Sanz L, Olvera-Rodríguez A, Bénard-Valle M, Alagón A, Calvete JJ. Venomics and biochemical analysis of the black-tailed horned pitviper, Mixcoatlus melanurus, and characterization of Melanurutoxin, a novel crotoxin homolog. J Proteomics. 2020;225:103865. doi: 10.1016/j.jprot.2020.103865.

  15. Fix JD, Minton SA Jr. Venom extraction and yields from the North American coral snake, Micrurus fulvius. Toxicon. 1976;14(2):143-145. doi: 10.1016/0041-0101(76)90106-9.

  16. Lomonte B, Rey-Suárez P, Fernández J, Sasa M, Pla D, Vargas N, et al. Venoms of Micrurus coral snakes: evolutionary trends in compositional patterns emerging from proteomic analyses. Toxicon. 2016;122:7-25. doi: 10.1016/j.toxicon.2016.09.008

  17. Roze JA. Coral snakes of the Americas: biology identification and venoms. USA: Krieger Publishing Company; 1996.

  18. Slowinski JB. A phylogenetic analysis of the New World coral snakes (Elapidae: Leptomicrurus, Micruroides, and Micrurus) based on allozymic and morphological characters. J Herpetol. 1995;29(3):325-338.

  19. Reyes-Velasco J, Adams RH, Boissinot S, Parkinson CL, Campbell JA, Castoe TA, et al. Genome-wide SNPs clarify lineage diversity confused by coloration in coralsnakes of the Micrurus diastema species complex (Serpentes: Elapidae). Mol Phylogenet Evol. 2020;147:106770. doi: 10.1016/j.ympev.2020.106770.

  20. Barber CM, Isbister GK, Hodgson WC. Alpha neurotoxins. Toxicon. 2013;66:47-58. doi: 10.1016/j.toxicon.2013.01.019.

  21. Bénard-Valle M, Carbajal-Saucedo A, de Roodt A, López-Vera E, Alagón A. Biochemical characterization of the venom of the coral snake Micrurus tener and comparative biological activities in the mouse and a reptile model. Toxicon. 2014;77:6-15. doi: 10.1016/j.toxicon.2013.10.005.

  22. Gibbs HL, Sanz L, Chiucchi JE, Farrell TM, Calvete JJ. Proteomic analysis of ontogenetic and diet-related changes in venom composition of juvenile and adult Dusky Pigmy rattlesnakes (Sistrurus miliarius barbouri). J Proteomics. 2011;74(10):2169-2179. doi: 10.1016/j.jprot.2011.06.013.

  23. Huang P, Mackessy SP. Biochemical characterization of phospholipase A2 (trimorphin) from the venom of the Sonoran Lyre Snake Trimorphodon biscutatus lambda (family Colubridae). Toxicon. 2004;44(1):27-36. doi: 10.1016/j.toxicon.2004.03.027.

  24. Pawlak J, Mackessy SP, Sixberry NM, Stura EA, Le Du MH, Ménez R, et al. Irditoxin, a novel covalently linked heterodimeric three-finger toxin with high taxon-specific neurotoxicity. FASEB J. 2009;23(2):534-545. doi: 10.1096/fj.08-113555.

  25. Rodrigues CFB, Zdenek CN, Serino-Silva C, de Morais-Zani K, Grego KF, Bénard-Valle M, et al. BoaγPLI from boa constrictor blood is a broad-spectrum inhibitor of venom PLA2 pathophysiological actions. J Chem Ecol. 2021;47(10-11):907-914. doi: 10.1007/s10886-021-01289-4.

  26. Luna-Bauza E, Martínez-Ponce G, Salazar-Hernández AC. Mordeduras por serpiente. Panorama epidemiológico de la zona de Córdoba, Veracruz. Rev Fac Med UNAM. 2004;47(4):149-153.

  27. Madrigal-Anaya J del C, Cruz-Ibarra A, Rodríguez-Uvalle NC, Gil-Alarcón G, Alagón A, Rodríguez-Flores G, et al. A case of exotic envenomation by Naja kaouthia in Mexico. Lat Am J Clin Sci Med Technol. 2022;4(1):1-8. doi: 10.34141/ljcs4666817

  28. Antúnez J, Fernández J, Lomonte B, Angulo Y, Sanz L, Pérez A, et al. Antivenomics of Atropoides mexicanus and Atropoides picadoi snake venoms: relationship to the neutralization of toxic and enzymatic activities. J Venom Res. 2010;1:8-17.

  29. García-Osorio B, Lomonte B, Bénard-Valle M, López de León J, Román-Domínguez L, Mejía-Domínguez NR, et al. Ontogenetic changes in the venom of Metlapilcoatlus nummifer, the mexican jumping viper. Toxicon. 2020;184:204-214. doi: 10.1016/j.toxicon.2020.06.023.

  30. Borja M, Neri-Castro E, Pérez-Morales R, Strickland JL, Ponce-López R, Parkinson CL, et al. Ontogenetic change in the venom of Mexican black-tailed rattlesnakes (Crotalus molossus nigrescens). Toxins (Basel). 2018;10(12):501. doi: 10.3390/toxins10120501.

  31. Bénard-Valle M, Neri-Castro E, Yañez-Mendoza MF, Lomonte B, Olvera A, Zamudio F, et al. Functional, proteomic and transcriptomic characterization of the venom from Micrurus browni browni: identification of the first lethal multimeric neurotoxin in coral snake venom. J Proteomics. 2020;225:103863. doi: 10.1016/j.jprot.2020.103863.

  32. Rosso JP, Vargas-Rosso O, Gutiérrez JM, Rochat H, Bougis PE. Characterization of alpha-neurotoxin and phospholipase A2 activities from Micrurus venoms. Determination of the amino acid sequence and receptor-binding ability of the major alpha-neurotoxin from Micrurus nigrocinctus nigrocinctus. Eur J Biochem. 1996;238(1):231-239. doi: 10.1111/j.1432-1033.1996.0231q.x.

  33. Gutiérrez JM, Chaves F, Bolaños R. Estudio comparativo de venenos de ejemplares recién nacidos y adultos de Bothrops asper. Rev Biol Trop. 1980;28(2):341-351.

  34. Lomonte B, Gutiérrez JM. A new muscle damaging toxin, myotoxin II, from the venom of the snake Bothrops asper (terciopelo). Toxicon. 1989;27(7):725-33. doi: 10.1016/0041-0101(89)90039-1.

  35. Moreno E, Gutiérrez JM. Body distribution of Bothrops asper (terciopelo) snake venom myotoxin and its relationship to pathological changes. Toxicon. 1988;26(4):403-409. doi: 10.1016/0041-0101(88)90009-8.

  36. Lomonte B, Gené JA, Gutiérrez JM, Cerdas L. Estudio comparativo de los venenos de serpiente cascabel (Crotalus durissus durissus) de ejemplares adultos y recien nacidos. Toxicon. 1983;21(3):379-384. doi: 10.1016/0041-0101(83)90094-6.

  37. Tasoulis T, Isbister GK. A current perspective on snake venom composition and constituent protein families. Arch Toxicol. 2023;97(1):133-153. doi: 10.1007/s00204-022-03420-0.

  38. Tasoulis T, Isbister GK. A review and database of snake venom proteomes. Toxins (Basel). 2017;9(9):290. doi: 10.3390/toxins9090290.

  39. Fox JW, Gutiérrez JM. Understanding the snake venom metalloproteinases: an interview with Jay Fox and José María Gutiérrez. Toxins (Basel). 2017;9(1):33. doi: 10.3390/toxins9010033.

  40. Fox JW, Serrano SM. Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. FEBS J. 2008;275(12):3016-3030. doi: 10.1111/j.1742-4658.2008.06466.x.

  41. Gutiérrez JM, Escalante T, Rucavado A, Herrera C, Fox JW. A comprehensive view of the structural and functional alterations of extracellular matrix by Snake Venom Metalloproteinases (SVMPs): novel perspectives on the pathophysiology of envenoming. Toxins (Basel). 2016;8(10):304. doi: 10.3390/toxins8100304.

  42. Terra RM, Pinto AF, Guimaraes JA, Fox JW. Proteomic profiling of snake venom metalloproteinases (SVMPs): insights into venom induced pathology. Toxicon. 2009;54(6):836-844. doi: 10.1016/j.toxicon.2009.06.010.

  43. Nikai T, Taniguchi K, Komori Y, Masuda K, Fox JW, Sugihara H. Primary structure and functional characterization of bilitoxin-1, a novel dimeric P-II snake venom metalloproteinase from Agkistrodon bilineatus venom. Arch Biochem Biophys. 2000;378(1):6-15. doi: 10.1006/abbi.2000.1795.

  44. Fox JW, Bjarnason JB. Atrolysins: metalloproteinases from Crotalus atrox venom. Methods Enzymol. 1995;248:368-387. doi: 10.1016/0076-6879(95)48024-2.

  45. Markland FS. Rattlesnake venom enzymes that interact with components of the hemostatic system. J Toxicol Toxin Rev. 1983;2(2):119-160. doi: 10.3109/15569548309012695.

  46. Markland FS Jr. Snake venom fibrinogenolytic and fibrinolytic enzymes: an updated inventory. Registry of exogenous hemostatic factors of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost. 1998;79(3):668-674.

  47. Markland FS. Snake venoms and the hemostatic system. Toxicon. 1998;36(12):1749-1800. doi: 10.1016/s0041-0101(98)00126-3.

  48. Swenson S, Markland FS Jr. Snake venom fibrin(ogen)olytic enzymes. Toxicon. 2005;45(8):1021-1039. doi: 10.1016/j.toxicon.2005.02.027.

  49. McCleary RJ, Kini RM. Non-enzymatic proteins from snake venoms: a gold mine of pharmacological tools and drug leads. Toxicon. 2013;62:56-74. doi: 10.1016/j.toxicon.2012.09.008.

  50. Serrano SM, Maroun RC. Snake venom serine proteinases: sequence homology vs. substrate specificity, a paradox to be solved. Toxicon. 2005;45(8):1115-32. doi: 10.1016/j.toxicon.2005.02.020.

  51. Kini RM, Evans HJ. Structure-function relationships of phospholipases. The anticoagulant region of phospholipases A2. J Biol Chem. 1987;262(30):14402-14407.

  52. Ponce-Soto LA, Lomonte B, Rodrigues-Simioni L, Novello JC, Marangoni S. Biological and structural characterization of crotoxin and new isoform of crotoxin B PLA(2) (F6a) from Crotalus durissus collilineatus snake venom. Protein J. 2007;26(4):221-230. doi: 10.1007/s10930-006-9063-y.

  53. Gutiérrez JM, Ponce-Soto LA, Marangoni S, Lomonte B. Systemic and local myotoxicity induced by snake venom group II phospholipases A2: comparison between crotoxin, crotoxin B and a Lys49 PLA2 homologue. Toxicon. 2008;51(1):80-92. doi: 10.1016/j.toxicon.2007.08.007.

  54. Lomonte B, Rangel J. Snake venom Lys49 myotoxins: from phospholipases A(2) to non-enzymatic membrane disruptors. Toxicon. 2012;60(4):520-530. doi: 10.1016/j.toxicon.2012.02.007.

  55. Faure G, Bon C. Crotoxin, a phospholipase A2 neurotoxin from the South American rattlesnake Crotalus durissus terrificus: purification of several isoforms and comparison of their molecular structure and of their biological activities. Biochemistry. 1988;27(2):730-738. doi: 10.1021/bi00402a036.

  56. Faure G, Saul F. Crystallographic characterization of functional sites of crotoxin and ammodytoxin, potent β-neurotoxins from Viperidae venom. Toxicon. 2012;60(4):531-538. doi: 10.1016/j.toxicon.2012.05.009.

  57. Faure G, Porowinska D, Saul F. Crotoxin from Crotalus durissus terrificus and crotoxin-related proteins: structure and function relationship. En: Toxins and drug discovery. Dordrecht: Springer Netherlands; 2017. p. 3-20.

  58. Faure G, Copic A, Le Porrier S, Gubensek F, Bon C, Krizaj I. Crotoxin acceptor protein isolated from Torpedo electric organ: binding properties to crotoxin by surface plasmon resonance. Toxicon. 2003;41(4):509-517. doi: 10.1016/s0041-0101(02)00394-x.

  59. Faure G, Harvey AL, Thomson E, Saliou B, Radvanyi F, Bon C. Comparison of crotoxin isoforms reveals that stability of the complex plays a major role in its pharmacological action. Eur J Biochem. 1993;214(2):491-496. doi: 10.1111/j.1432-1033.1993.tb17946.x.

  60. Faure G, Choumet V, Bouchier C, Camoin L, Guillaume JL, Monegier B, et al. The origin of the diversity of crotoxin isoforms in the venom of Crotalus durissus terrificus. Eur J Biochem. 1994;223(1):161-164. doi: 10.1111/j.1432-1033.1994.tb18978.x.

  61. Glenn JL, Straight RC, Wolfe MC, Hardy DL. Geographical variation in Crotalus scutulatus scutulatus (Mojave rattlesnake) venom properties. Toxicon. 1983;21(1):119-130.

  62. Borja M, Castañeda G, Espinosa J, Neri E, Carbajal A, Clement H, et al. Mojave Rattlesnake (Crotalus scutulatus scutulatus) with type B venom from Mexico. Copeia [Internet]. 2014;2014(1):7-13.

  63. Cate RL, Bieber AL. Purification and characterization of mojave (Crotalus scutulatus scutulatus) toxin and its subunits. Arch Biochem Biophys. 1978;189(2):397-408. doi: 10.1016/0003-9861(78)90227-8.

  64. Glenn JL, Straight RC. Intergradation of two different venom populations of the Mojave rattlesnake (Crotalus scutulatus scutulatus) in Arizona. Toxicon. 1989;27(4):411-418. doi: 10.1016/0041-0101(89)90203-1.

  65. Rael ED, Lieb CS, Maddux N, Varela-Ramirez A, Perez J. Hemorrhagic and Mojave toxins in the venoms of the offspring of two Mojave rattlesnakes (Crotalus scutulatus scutulatus). Comp Biochem Physiol B. 1993;106(3):595-600. doi: 10.1016/0305-0491(93)90136-s.

  66. Borja M, Neri-Castro E, Castañeda-Gaytán G, Strickland JL, Parkinson CL, Castañeda-Gaytán J, et al. Biological and proteolytic variation in the venom of Crotalus scutulatus scutulatus from Mexico. Toxins (Basel). 2018;10(1):35. doi: 10.3390/toxins10010035.

  67. Strickland JL, Mason AJ, Rokyta DR, Parkinson CL. Phenotypic variation in Mojave rattlesnake (Crotalus scutulatus) venom is driven by four toxin families. Toxins (Basel). 2018;10(4):135. doi: 10.3390/toxins10040135.

  68. Calvete JJ, Pérez A, Lomonte B, Sánchez EE, Sanz L. Snake venomics of Crotalus tigris: the minimalist toxin arsenal of the deadliest Nearctic rattlesnake venom. Evolutionary clues for generating a pan-specific antivenom against crotalid type II venoms [corrected]. J Proteome Res. 2012;11(2):1382-1390. doi: 10.1021/pr201021d.

  69. Marinovic MP, Mas CD, Monte GG, Felix D, Campeiro JD, Hayashi MAF. Crotamine: function diversity and potential applications. En: Snake Venoms. Dordrecht: Springer Netherlands; 2017. p. 265-293.

  70. Brazil OV, Prado-Franceschi J, Laure CJ. Repetitive muscle responses induced by crotamine. Toxicon. 1979;17(1):61-57. doi: 10.1016/0041-0101(79)90256-3.

  71. Peigneur S, Orts DJ, Prieto da Silva AR, Oguiura N, Boni-Mitake M, de Oliveira EB, et al. Crotamine pharmacology revisited: novel insights based on the inhibition of KV channels. Mol Pharmacol. 2012;82(1):90-96. doi: 10.1124/mol.112.078188.

  72. Dashevsky D, Fry BG. Ancient diversification of three-finger toxins in Micrurus coral snakes. J Mol Evol. 2018;86(1):58-67. doi: 10.1007/s00239-017-9825-5.

  73. Fry BG. From genome to "venome": molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res. 2005;15(3):403-420. doi: 10.1101/gr.3228405.

  74. Fry BG, Wüster W, Kini RM, Brusic V, Khan A, Venkataraman D, et al. Molecular evolution and phylogeny of elapid snake venom three-finger toxins. J Mol Evol. 2003;57(1):110-129. doi: 10.1007/s00239-003-2461-2.

  75. Borja M, Castañeda-Gaytán G, Alagón A, Strickland JL, Parkinson CL, Gutiérrez-Martínez A, et al. Venom variation and ontogenetic changes in the Crotalus molossus complex: insights into composition, activities, and antivenom neutralization. Comp Biochem Physiol C Toxicol Pharmacol. 2025;290:110129. doi: 10.1016/j.cbpc.2025.110129.

  76. Neri-Castro E, Zarzosa V, Benard-Valle M, Rodríguez-Solís AM, Hernández-Orihuela L, Ortiz-Medina JA, et al. Quantifying venom production: a study on Micrurus snakes in Mexico. Toxicon. 2024;240:107658. doi: 10.1016/j.toxicon.2024.107658.

  77. Minton SA, Weinstein SA. Geographic and ontogenic variation in venom of the western diamondback rattlesnake (Crotalus atrox). Toxicon. 1986;24(1):71-80. doi: 10.1016/0041-0101(86)90167-4.

  78. Saravia P, Rojas E, Arce V, Guevara C, López JC, Chaves E, et al. Geographic and ontogenic variability in the venom of the neotropical rattlesnake Crotalus durissus: pathophysiological and therapeutic implications. Rev Biol Trop. 2002;50(1):337-346.

  79. Pla D, Sanz L, Sasa M, Acevedo ME, Dwyer Q, Durban J, Pérez A, et al. Proteomic analysis of venom variability and ontogeny across the arboreal palm-pitvipers (genus Bothriechis). J Proteomics. 2017;152:1-12. doi: 10.1016/j.jprot.2016.10.006.

  80. Mackessy SP, Leroy J, Mociño-Deloya E, Setser K, Bryson RW, Saviola AJ. Venom ontogeny in the Mexican lance-headed rattlesnake (Crotalus polystictus). Toxins (Basel). 2018;10(7):271. doi: 10.3390/toxins10070271.

  81. Pozas-Ocampo IF, Carbajal-Saucedo A, Gatica-Colima AB, Cordero-Tapia A, Arnaud-Franco G. Toxicological comparison of Crotalus ruber lucasensis venom from different ecoregions of the Baja California Peninsula. Toxicon. 2020;187:111-115. doi: 10.1016/j.toxicon.2020.08.029.

  82. Durban J, Sanz L, Trevisan-Silva D, Neri-Castro E, Alagón A, Calvete JJ. Integrated venomics and venom gland transcriptome analysis of juvenile and adult Mexican rattlesnakes Crotalus simus, C. tzabcan, and C. culminatus revealed miRNA-modulated ontogenetic shifts. J Proteome Res. 2017;16(9):3370-3390. doi: 10.1021/acs.jproteome.7b00414.

  83. Castro EN, Lomonte B, del Carmen Gutiérrez M, Alagón A, Gutiérrez JM. Intraspecies variation in the venom of the rattlesnake Crotalus simus from Mexico: different expression of crotoxin results in highly variable toxicity in the venoms of three subspecies. J Proteomics. 2013;87:103-121. doi: 10.1016/j.jprot.2013.05.024.

  84. Franco-Servín C, Neri-Castro E, Bénard-Valle M, Alagón A, Rosales-García RA, Guerrero-Alba R, et al. Biological and biochemical characterization of Coronado Island rattlesnake (Crotalus helleri caliginis) venom and antivenom neutralization. Toxins (Basel). 2021;13(8):582.

  85. Borja M, Galan JA, Cantu E Jr, Zugasti-Cruz A, Rodríguez-Acosta A, Lazcano D, et al. Morulustatin, a disintegrin that inhibits ADP-induced platelet aggregation, isolated from the Mexican Tamaulipan rock rattlesnake (Crotalus lepidus morulus). Rev Cient (Maracaibo). 2016;26(2):86-94.

  86. Borja M, Lazcano D, Martínez-Romero G, Morlett J, Sánchez E, Cepeda-Nieto AC, et al. Intra-specific variation in the protein composition and proteolytic activity of venom of Crotalus lepidus morulus from the Northeast of Mexico. Copeia. 2013;2013(4):707-716. doi: 10.1643/ot-13-005

  87. Saviola AJ, Gandara AJ, Bryson RW Jr, Mackessy SP. Venom phenotypes of the rock rattlesnake (Crotalus lepidus) and the ridge-nosed rattlesnake (Crotalus willardi) from México and the United States. Toxicon. 2017;138:119-129. doi: 10.1016/j.toxicon.2017.08.016.

  88. Borja M, Neri-Castro E, Gutiérrez-Martínez A, Bledsoe R, Zarzosa V, Rodriguez-López B, et al. Ontogenetic change in the venom composition of one Mexican black-tailed rattlesnake (Crotalus molossus nigrescens) from Durango, Mexico. Toxicon. 2023;234:107280. doi: 10.1016/j.toxicon.2023.107280.

  89. Oguiura N, Collares MA, Furtado MF, Ferrarezzi H, Suzuki H. Intraspecific variation of the crotamine and crotasin genes in Crotalus durissus rattlesnakes. Gene. 2009;446(1):35-40. doi: 10.1016/j.gene.2009.05.015.

  90. Tasima LJ, Serino-Silva C, Hatakeyama DM, Nishiduka ES, Tashima AK, Sant'Anna SS, et al. Crotamine in Crotalus durissus: distribution according to subspecies and geographic origin, in captivity or nature. J Venom Anim Toxins Incl Trop Dis. 2020;26:e20190053.

  91. Toyama OD, Boschero CA, Martins AM, Fonteles CM, Monteiro SH, Toyama HM. Structure-function relationship of new crotamine isoform from the Crotalus durissus cascavella. Protein J. 2005;24(1):9-19. doi: 10.1007/s10930-004-0601-1.

  92. Margres MJ, Bigelow AT, Lemmon EM, Lemmon AR, Rokyta DR. Selection to increase expression, not sequence diversity, precedes gene family origin and expansion in rattlesnake venom. Genetics. 2017;206(3):1569-1580. doi: 10.1534/genetics.117.202655.

  93. Casewell NR, Jackson TNW, Laustsen AH, Sunagar K. Causes and consequences of snake venom variation. Trends Pharmacol Sci. 2020 Aug;41(8):570-581. doi: 10.1016/j.tips.2020.05.006.

  94. Farstad D, Thomas T, Chow T, Bush S, Stiegler P. Mojave rattlesnake envenomation in southern California: a review of suspected cases. Wilderness Environ Med. 1997;8(2):89-93. doi: 10.1580/1080-6032(1997)008[0089:MREISC]2.3.CO;2.

  95. Massey DJ, Calvete JJ, Sánchez EE, Sanz L, Richards K, Curtis R, et al. Venom variability and envenoming severity outcomes of the Crotalus scutulatus scutulatus (Mojave rattlesnake) from Southern Arizona. J Proteomics. 2012;75(9):2576-2587. doi: 10.1016/j.jprot.2012.02.035.

  96. Neri-Castro E, Ponce-Lopez R. Variación ontogénica en el veneno de Crotalus simus en México. Árido-Ciencia. 2018;3(1):42-47.

  97. Ponce-López R, Neri-Castro E, Borja M, Strickland JL, Alagón A. Neutralizing potency and immunochemical evaluation of an anti-Crotalus mictlantecuhtli experimental serum. Toxicon. 2020;187:171-180. doi: 10.1016/j.toxicon.2020.08.026.

  98. Zarzosa V, Lomonte B, Zamudio F, Ponce-López R, Olvera-Rodríguez F, Borja M, et al. Venom of the neotropical rattlesnake, Crotalus culminatus: intraspecific variation, neutralization by antivenoms, and immunogenicity in rabbits. Biochimie. 2024;216:160-174. doi: 10.1016/j.biochi.2023.10.014.

  99. Rivas E, Neri-Castro E, Bénard-Valle M, Hernánez-Dávila AI, Zamudio F, Alagón A. General characterization of the venoms from two species of rattlesnakes and an intergrade population (C. lepidus x aquilus) from Aguascalientes and Zacatecas, Mexico. Toxicon. 2017;138:191-195. doi: 10.1016/j.toxicon.2017.09.002.

  100. Durban J, Pérez A, Sanz L, Gómez A, Bonilla F, Rodríguez S, et al. Integrated "omics" profiling indicates that miRNAs are modulators of the ontogenetic venom composition shift in the Central American rattlesnake, Crotalus simus simus. BMC Genomics. 2013;14:234. doi: 10.1186/1471-2164-14-234.

  101. Neri-Castro E, Bénard-Valle M, Paniagua D, V Boyer L, D Possani L, López-Casillas F, et al. Neotropical rattlesnake (Crotalus simus) venom pharmacokinetics in lymph and blood using an ovine model. Toxins (Basel). 2020;12(7):455. doi: 10.3390/toxins12070455.

  102. Carbajal-Saucedo A, Floriano RS, Dal Belo CA, Olvera-Rodríguez A, Alagón A, Rodrigues-Simioni L. Neuromuscular activity of Micrurus laticollaris (Squamata: Elapidae) venom in vitro. Toxins (Basel). 2014;6(1):359-370. doi: 10.3390/toxins6010359.

  103. Paniagua D, Jiménez L, Romero C, Vergara I, Calderón A, Benard M, et al. Lymphatic route of transport and pharmacokinetics of Micrurus fulvius (coral snake) venom in sheep. Lymphology. 2012;45(4):144-153.

  104. Vergara I, Pedraza-Escalona M, Paniagua D, Restano-Cassulini R, Zamudio F, Batista CV, et al. Eastern coral snake Micrurus fulvius venom toxicity in mice is mainly determined by neurotoxic phospholipases A2. J Proteomics. 2014;105:295-306. doi: 10.1016/j.jprot.2014.02.027.

  105. Kini RM, Doley R. Structure, function and evolution of three-finger toxins: mini proteins with multiple targets. Toxicon. 2010;56(6):855-867. doi: 10.1016/j.toxicon.2010.07.010.

  106. Nirthanan S, Gwee MCE, Three-finger alpha-neurotoxins and the nicotinic acetylcholine receptor, forty years on. J Pharmacol Sci. 2004;94(1):1-17. doi: 10.1254/Jphs.94.1.

  107. Cardona-Ruda A, Rey-Suárez P, Núñez V. Anti-Neurotoxins from Micrurus mipartitus in the development of coral snake antivenoms. Toxins (Basel). 2022;14(4):265. doi: 10.3390/toxins14040265.

  108. Mackessy SP. Handbook of venoms and toxins of reptiles. Mackessy SP, editor. Second edition. Boca Raton: CRC Press, 2021.: CRC Press; 2021.

  109. Chippaux JP. Incidence and mortality due to snakebite in the Americas. PLoS Negl Trop Dis. 2017;11(6):e0005662. doi: 10.1371/journal.pntd.0005662.

  110. Núñez V, Otero R, Barona J, Saldarriaga M, Osorio RG, Fonnegra R, et al. Neutralization of the edema-forming, defibrinating and coagulant effects of Bothrops asper venom by extracts of plants used by healers in Colombia. Braz J Med Biol Res. 2004;37(7):969-977. doi: 10.1590/s0100-879x2004000700005.

  111. Otero R, Fonnegra R, Jiménez SL, Núñez V, Evans N, Alzate SP, et al. Snakebites and ethnobotany in the northwest region of Colombia: part I: traditional use of plants. J Ethnopharmacol. 2000;71(3):493-504. doi: 10.1016/s0378-8741(00)00243-9.

  112. Kaur P, Ghariwala V, Yeo KS, Tan HZ, Tan JCS, Armugam A, et al. Biochemistry of envenomation. Adv Clin Chem. 2012;57:187-252. doi: 10.1016/b978-0-12-394384-2.00007-3.

  113. Otero-Patiño R, Silva-Haad JJ, Barona-Acevedo MJ, Toro-Castaño MF, Quintana-Castillo JC, Díaz-Cadavid A, et al. Accidente bothrópico en Colombia: estudio multicéntrico de la eficacia seguridad de Antivipmyn-Tri®, un antiveneno polivalente producido en México. Iatreia. 2007;20(3):244-262

  114. Bernard M, Neri E, Fry BG, Boyer L. Venomous reptiles and their toxins: evolution, pathophysiology, and biodiscovery. Oxford University Press; 2015.

  115. Paniagua D, Vergara I, Boyer L, Alagón A. Role of lymphatic system on snake venom absorption. In: Snake venoms. Springer; 2017. p. 453-474.

  116. Carbajal-Márquez RA, Cedeño-Vázquez JR, Martínez-Arce A, Neri-Castro E, Machkour-M'rabet SC. Accessing cryptic diversity in neotropical rattlesnakes (Serpentes: Viperidae: Crotalus) with the description of two new species. Zootaxa. 2020;4729(4):zootaxa.4729.4.1.

  117. Boyer LV, Seifert SA, Cain JS. Recurrence phenomena after immunoglobulin therapy for snake envenomations: part 2. Guidelines for clinical management with crotaline Fab antivenom. Ann Emerg Med. 2001;37(2):196-201. doi: 10.1067/mem.2001.113134.

  118. Boyer LV, Seifert SA, Clark RF, McNally JT, Williams SR, Nordt SP, et al. Recurrent and persistent coagulopathy following pit viper envenomation. Arch Intern Med. 1999;159(7):706-710. doi: 10.1001/archinte.159.7.706.

  119. WHO. WHO guidelines for the production, control and regulation of snake antivenom immunoglobulins. World Health Organization Press, Geneva; 2010.

  120. Calvete JJ, Gutiérrez JM, Sanz L, Pla D, Lomonte B. Antivenomics: a proteomics tool for studying the immunoreactivity of antivenoms. En: Analyzing biomolecular interactions by mass spectrometry. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2015. p. 227-239.

  121. Gutiérrez JM, León G, Burnouf T. Antivenoms for the treatment of snakebite envenomings: the road ahead. Biologicals. 2011;39(3):129-142. doi: 10.1016/j.biologicals.2011.02.005.

  122. Gutiérrez JM, León G, Lomonte B, Angulo Y. Antivenoms for snakebite envenomings. Inflamm Allergy Drug Targets. 2011;10(5):369-380. doi: 10.2174/187152811797200669.

  123. Guadarrama-Martínez A, Neri-Castro E, Boyer L, Alagón A. Variability in antivenom neutralization of Mexican viperid snake venoms. PLoS Negl Trop Dis. 2024;18(5):e0012152. doi: 10.1371/journal.pntd.0012152.

  124. Olvera A, Ramos-Cerrillo B, Estévez J, Clement H, de Roodt A, Paniagua-Solís J, et al. North and South American loxosceles spiders: development of a polyvalent antivenom with recombinant sphingomyelinases D as antigens. Toxicon. 2006;48(1):64-74. doi: 10.1016/j.toxicon.2006.04.010.

  125. Román-Domínguez L, Neri-Castro E, Vázquez-López H, García-Osorio B, Archundia IG, Ortiz-Medina JA, et al. Biochemical and immunochemical characterization of venoms from snakes of the genus Agkistrodon. Toxicon X. 2019;4:100013. doi: 10.1016/j.toxcx.2019.100013.

  126. de Roodt AR, Estévez-Ramírez J, Paniagua-Solís JF, Litwin S, Carvajal-Saucedo A, Dolab JA, et al. Toxicidad de venenos de serpientes de importancia médica en México. Gac Med Mex. 2005;141(1):13-21.

  127. Mackessy SP, Leroy J, Mociño-Deloya E, Setser K, Bryson RW, Saviola AJ. Venom ontogeny in the Mexican lance-headed rattlesnake (Crotalus polystictus). Toxins (Basel). 2018;10(7):271. doi: 10.3390/toxins10070271.

  128. Arnaud-Franco G, Cordero-Tapia A, Ortíz-Ávila V, Moctezuma-González CL, Tejocote-Pérez M, Carbajal-Saucedo A. Comparison of biological and biochemical characteristics of venom from rattlesnakes in the southern Baja California Peninsula. Toxicon. 2018;148:197-201. doi: 10.1016/j.toxicon.2018.04.030.

  129. Neri-Castro E, Zarzosa V, Colis-Torres A, Fry BG, Olvera-Rodríguez A, Jones J, et al. Proteomic and toxicological characterization of the venoms of the most enigmatic group of rattlesnakes: the long-tailed rattlesnakes. Biochimie. 2022;202:226-236. doi: 10.1016/j.biochi.2022.08.015.

  130. Martínez-Romero G, Rucavado A, Lazcano D, Gutiérrez JM, Borja M, Lomonte B, et al. Comparison of venom composition and biological activities of the subspecies Crotalus lepidus lepidus, Crotalus lepidus klauberi and Crotalus lepidus morulus from Mexico. Toxicon. 2013;71:84-95. doi: 10.1016/j.toxicon.2013.05.006.

  131. Arnaud-Franco G, Ríos-Castro E, Velasco-Suárez A, García-de León FJ, Beltrán LF, Carbajal-Saucedo A. Venom comparisons of endemic and micro-endemic speckled rattlesnakes Crotalus mitchellii, C. polisi and C. thalassoporus from Baja California Peninsula. Toxicon. 2023;224:107030. doi: 10.1016/j.toxicon.2023.107030.

  132. Bénard-Valle M, Neri-Castro E, Elizalde-Morales N, Olvera-Rodríguez A, Strickland J, Acosta G, et al. Protein composition and biochemical characterization of venom from Sonoran coral snakes (Micruroides euryxanthus). Biochimie. 2021;182:206-216. doi: 10.1016/j.biochi.2021.01.003.




Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Table 1
Table 2

2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Toxicol Clin. 2025;1