medigraphic.com
SPANISH

Revista ADM Órgano Oficial de la Asociación Dental Mexicana

ISSN 0001-0944 (Print)
Órgano Oficial de la Asociación Dental Mexicana
  • Contents
  • View Archive
  • Information
    • General Information        
    • Directory
  • Publish
    • Instructions for authors        
    • Send manuscript
  • medigraphic.com
    • Home
    • Journals index            
    • Register / Login
  • Mi perfil

2025, Number 4

<< Back Next >>

Rev ADM 2025; 82 (4)

The Warburg effect and its influence on oral carcinogenesis: a literature review.

Kattan-Rodríguez JE, Salgado-Chavarría F, Jacinto-Alemán LF
Full text How to cite this article 10.35366/121016

DOI

DOI: 10.35366/121016
URL: https://dx.doi.org/10.35366/121016

Language: Spanish
References: 29
Page: 232-238
PDF size: 350.16 Kb.


Key words:

oral cancer, Warburg effect, carcinogenesis.

ABSTRACT

In the 1920's, Otto Warburg proposed that cancer cells exhibit increased glucose uptake and lactate production, using aerobic glycolysis for ATP generation. This phenomenon, known as the Warburg effect, becomes a hallmark of cancer proliferation and development. These neoplastic cells generate an acidic environment that promotes malignancy, invasion, and metastasis. Head and neck cancers (HNC) are among the top 10 malignancies, with oral cancer responsible for 50% of these cases. Understanding the main cause and mechanism of cancer development is essential for prevention and diagnosis, as well as establishing more effective treatments. Therefore, the objective of this article is to conduct a review of the Warburg effect and how it mainly affects and influences the metabolism of cancer cells, especially oral cancer.


REFERENCES

  1. Zam W, Ahmed I, Yousef H. The Warburg effect on cancer cells survival: the role of sugar starvation in cancer therapy. Curr Rev Clin Exp Pharmacol. 2021; 16 (1): 30-38. doi: 10.2174/1574884715666200413121756.

  2. Liu C, Jin Y, Fan Z. The mechanism of Warburg effect-induced chemoresistance in cancer. Front Oncol. 2021; 11: 698023. doi: 10.3389/fonc.2021.698023.

  3. Icard P, Shulman S, Farhat D, Steyaert JM, Alifano M, Lincet H. How the Warburg effect supports aggressiveness and drug resistance of cancer cells? Drug Resist Updat. 2018; 38: 1-11. doi: 10.1016/j.drup.2018.03.001.

  4. Nakazato K, Mogushi K, Kayamori K et al. Glucose metabolism changes during the development and progression of oral tongue squamous cell carcinomas. Oncol Lett. 2019; 18: 1372-1380. doi: 10.3892/ol.2019.10420.

  5. Kurihara-Shimomura M, Sasahira T, Nakashima C, Kuniyasu H, Shimomura H, Kirita T. The multifarious functions of pyruvate kinase M2 in oral cancer cells. Int J Mol Sci. 2018; 19 (10): 2907. doi: 10.3390/ijms19102907.

  6. Chu Y, Chang Y, Lu W et al. Regulation of autophagy by glycolysis in cancer. Cancer Management and Research. 2020; 12: 13259-13271.

  7. Mertoglu C. Glucose metabolism and oncogenes in cancer. Ann Med Res. 2021; 28 (8): 1605-1610. doi: 10.5455/annalsmedres.2020.09.903.

  8. Jacquet P, Stéphanou A. Searching for the metabolic signature of cancer: a review from Warburg's time to now. Biomolecules. 2022; 12: 1412. doi: 10.3390/biom12101412.

  9. Pragallapati S, Manyam R. Glucose Transporter 1 in health and disease. J Oral Maxillofac Pathol. 2019; 23: 443-449. doi: 10.4103/jomfp.JOMFP_22_18.

  10. Russell S, Xu L, Kam Y et al. Proton export drives the Warburg Effect. bioRxiv. 2021. doi: 10.1101/2021.09.20.461019.

  11. Spencer N, Stanton R. The Warburg effect, lactate, and nearly a century of trying to cure cancer. Semin Nephrol. 2019; 39: 380-393. doi: 10.1016/j.semnephrol.2019.04.007.

  12. Bononi G, Masoni S, Di Bussolo V et al. Historical perspective of tumor glycolysis: a century with Otto Warburg. Semin Cancer Biol. 2022; 86: 325-333. Doi: 10.1016/j.semcancer.2022.07.003.

  13. Pascale RM, Calvisi DF, Simile MM, Feo CF, Feo F. The Warburg effect 97 years after its discovery. Cancers (Basel). 2020; 12 (10): 2819. doi: 10.3390/cancers12102819.

  14. Kato Y, Maeda T, Suzuki A, Baba Y. Cancer metabolism: new insights into classic characteristics. Jpn Dent Sci Rev. 2018; 54; 8-21. doi: 10.1016/j.jdsr.2017.08.003.

  15. Kocianova E, Piatrikove V, Golias T. Revisiting the Warburg effect with focus on lactate. Cancers (Basel). 2022; 14 (24): 6028. doi: 10.3390/cancers14246028.

  16. Menchikov LG, Shestov AA, Popov AV. Warburg effect revisited: embodiment of classical biochemistry and organic chemistry. Current State and Prospects. Biochemistry (Mosc). 2023; 88 (Suppl 1): S1-S20. doi: 10.1134/S0006297923140018.

  17. Paul S, Ghosh S, Kumar S. Tumor glycolysis, an essential sweet tooth of tumor cells. Semin Cancer Biol. 2022; 86 (Pt 3): 1216-1230. doi: 10.1016/j.semcancer.2022.09.007.

  18. Nava GM, Madrigal PLA. Metabolic profile of the Warburg effect as a tool for molecular prognosis and diagnosis of cancer. Expert Rev Mol Diagn. 2022; 22 (4): 439-447. doi: 10.1080/14737159.2022.2065196.

  19. Unterlass JE, Curtin NJ. Warburg and Krebs and related effects in cancer. Expert Rev Mol Med. 2019; 21: e4. doi: 10.1017/erm.2019.4.

  20. Ancey PB, Contat C, Meylan E. Glucose transporters in cancer - from tumor cells to the tumor microenvironment. FEBS J. 2018; 285 (16): 2926-2943. doi: 10.1111/febs.14577.

  21. Botha H, Farah CS, Koo K et al. The role of glucose transporters in oral squamous cell carcinoma. Biomolecules. 2021; 11 (8): 1070. doi: 10.3390/biom11081070.

  22. Nowak N, Kulma A, Gutowicz J. Up-regulation of key glycolysis proteins in cancer development. Open Life Sci. 2018; 13: 569-581. doi: 10.1515/biol-2018-0068.

  23. Hsu MC, Hung WC. Pyruvate kinase M2 fuels multiple aspects of cancer cells: from cellular metabolism, transcriptional regulation to extracellular signaling. Mol Cancer. 2018; 17 (1): 35. doi: 10.1186/s12943-018-0791-3.

  24. Mirestean CC, Iancu RI, Iancu DPT. New horizons in modulating the radio-sensitivity of head and neck cancer-100 years after Warburg' effect discovery. Front Oncol. 2022; 12: 908695. doi: 10.3389/fonc.2022.908695.

  25. Vilaseca I, Fuster G, Avilés-Jurado FX. The impact of diabetes in head and neck cancer. Curr Opin Otolaryngol Head Neck Surg. 2020; 28: 107-111. doi: 10.1097/MOO.0000000000000606.

  26. Wu H, Wang Y, Ying M, Jin C, Li J, Hu X. Lactate dehydrogenases amplify reactive oxygen species in cancer cells in response to oxidative stimuli. Signal Transduct Target Ther. 2021; 6 (1): 242. doi: 10.1038/s41392-021-00595-3.

  27. Wilkie MD, Anaam EA, Lau AS et al. TP53 mutations in head and neck cancer cells determine the Warburg phenotypic switch creating metabolic vulnerabilities and therapeutic opportunities for stratified therapies. Cancer Lett. 2020; 478: 107-121. doi: 10.1016/j.canlet. 2020.02.032.

  28. Tanaka N, Zhao M, Tang L et al. Gain-of-function mutant p53 promotes the oncogenic potential of head and neck squamous cell carcinoma cells by targeting the transcription factors FOXO3a and FOXM1. Oncogene. 2018; 37 (10): 1279-1292. doi: 10.1038/s41388-017-0032-z.

  29. Kang H, Kim B, Park J et al. The Warburg effect on radioresistance: survival beyond growth. Biochim Biophys Acta Rev Cancer. 2023; 1878: 188988. doi: 10.1016/j.bbcan.2023.188988.




Figure 1

2020     |     www.medigraphic.com

Mi perfil

C?MO CITAR (Vancouver)

Rev ADM. 2025;82